数学名人故事手抄报内容
一、 法国大数学家,物理学家帕斯卡,小时候不但喜欢问为什么,还喜欢自己去钻研,找出问题的答案,有一次,帕斯卡在厨房外边玩,听到厨师把盘子弄得丁丁当当地响。这声音引起了帕斯卡的注意。 他想,要是敲打发出声音的话,为何刀一离开盘子以后,声音不马上消失呢?他就自己做实验。他发现盘子被敲打以后,声音不断,但是只要用手一按盘子边,声音就立刻停止。帕斯卡高兴地发现,原来声音最要紧的是震动,不是敲打。打击停止了,只要振动不停止,还能发出声音来。 这样,帕斯卡11岁就发现了声学的震动原理,开始了科学的探索。他能够在16岁就发表数学论文,22岁研制出世界第一台机械计算机,24岁完成著名的真空试验,这些都是跟他从小爱动脑筋分不开的。 二、 阿基米德有许多故事,其中最著名的要算发现阿基米德定律的那个洗澡的故事了。 国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电。"我找到了!" 阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多,干是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。随着进一步研究,沿用至今的流体力学最重要基石--阿基米德定律诞生了。 三、 当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时间处理一些自己的私事。因此打算出一道难题给学生练习,他的题目是: 1+2+3+4+5+6+7+8+9+10=? 因为加法刚教不久,所以老师觉得写出了这题,学生肯定是要算蛮久的。自己也就可以借此机会来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里。老师看了,很生气地训斥高斯。 但是高斯却说他已经将答案算出来了,就是55。老师听了吓了一跳,就问高斯如何算出来的。高斯答道:“我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又因为11+11+11+11+11=55,所以我就是这么算出来了。”老师同学听了以后,都对高斯竖起了大拇指,后来的高斯长大后,成为了一位很伟大的数学家。

数学手抄报的内容
你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。 故事如,祖 冲 之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。还有些资料,,华 罗 庚 华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。 华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
第一写关于数学的名言罗素说:“数学是符号加逻辑”毕达哥拉斯说:“数支配着宇宙”哈尔莫斯说:“数学是一种别具匠心的艺术”米斯拉说:“数学是人类的思考中最高的成就”培根(英国哲学家)说:“数学是打开科学大门的钥匙”布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”黑格尔说:“数学是上帝描述自然的符号”魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”柏拉图说:“数学是一切知识中的最高形式”考特说:“数学是人类智慧皇冠上最灿烂的明珠”第二写关于数学的意义数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。第三写关于数学的小故事数学名人小故事-康托尔由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
1.勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。 无声胜有声在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721×761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。 2.有3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板.后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9 = 27元 + 服务生藏起的2元=29元,还有一元钱去了哪里??? 答:题中的“3 X 9 = 27元 + 服务生藏起的2元=29元”其实是个陷阱,因为三人每人付9元所支出的27元中,有25元给了店老板,还有2元被服务生藏起,其实应该是3 X 9 = 27元 - 服务生藏起的2元=25元(付给老板)出题人利用了29和30的1元差价来迷惑人,其实29元的数字没有任何实际意义存在。 求采纳!!!!!!!!!!!!
1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(A?Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。 高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。 《自学成才的数学家》华罗庚小时候很有数学天份,但家庭遭变故,只得停学看店,靠自学成为了数学家…… 高斯印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。 华罗庚一生都是在国难中挣扎。他常说他的一生中曾遭遇三大劫难。自先是在他童年时,家贫,失学,患重病,腿残废。第二次劫难是抗日战争期间,孤立闭塞,资料图书缺乏。第三次劫难是“文化大革命”,家被查抄,手槁散失,禁止他去图书馆,将他的助手与学生分配到外地等。在这等恶劣的环境下,要坚持工作,做出成就,需付出何等努力,需怎样坚强的毅力是可想而知的.早在40年代,华罗庚已是世界数论界的领袖数学家之一。但他不满足,不停步,宁肯另起炉灶,离开数论,去研究他不熟悉的代数与复分析,这又需要何等的毅力寻勇气! 华罗庚善于用几句形象化的语言将深刻的道理说出来。这些语言简意深,富于哲理,令人难忘。早在 SO年代,他就提出“天才在于积累,聪明在于勤奋”。 华罗庚虽然聪明过人,但从不提及自己的天分,而把比聪明重要得多的“勤奋”与“积累”作为成功的钥匙,反复教育年青人,要他们学数学做到“拳不离手,曲不离口”,经常锻炼自己。50年代中期,针对当时数学研究所有些青年,做出一些成果后,产生自满情绪,或在同一水平上不断写论文的倾问,华罗庚及时提出:“要有速度,还要有加速度。”所谓“速度”就是要出成果,所谓‘加速度”就是成果的质量要不断提高。“文化大革命”刚结束的,一些人,特别是青年人受到不良社会风气的影响,某些部门,急于求成,频繁地要求报成绩、评奖金等不符合科学规律的做法,导致了学风败坏。表现在粗制滥造,争名夺利,任意吹嘘。 1978年他在中国数学会成都会议上语重心长地提出:“早发表,晚评价。”后来又进一步提出:“努力在我,评价在人。”这实际上提出了科学发展及评价科学工作的客观规律,即科学工作要经过历史检验才能逐步确定其真实价值,这是不依赖人的主观意志为转移的客 观规律。” 华罗庚从不隐讳自己的弱点,只要能求得学问, 他宁肯暴露弱点。在他古稀之年去英国访问时,他把成语“不要班门弄斧”改成“弄斧必到班门”来鼓励自己。实际上,前一句话是要人隐讳缺点,不要暴露。华罗庚每到一个大学,是讲别人专长的东西,从而得到帮助呢,还是对别人不专长的,把讲学变成形式主义走过场?华罗庚选择前者,也就是“弄等必到班门”。早在50年代,华罗庚在《数论导引》的序言里就把搞数学比作下棋,号召大家找高手下,即与大数学家较量。中国象棋有个规则,那就是“观棋不语真君子,落子无悔大丈夫”。1981年,在淮南煤矿的一次演讲中,华罗康指出:“观棋不语非君子,互相帮助;落子有悔大丈夫,改正缺点。”意思是当你见到别人搞的东西有毛病时,一定要说,另一方面,当你发现自己搞的东西有毛病时,一定要修正。这才是“君子”与“丈夫”。针对一些人遇到困难就退缩,缺乏坚持到底的精神,华罗庚在给金坛中学写的条幅中写道:“人说不到黄河心不死,我说到了黄河心更坚。” 人老了,精力要衰退,这是自然规律。华罗庚深知年龄是不饶人的。1979年在英国时,他指出:“村老易空,人老易松,科学之道,戒之以空,戒之以松,我愿一辈子从实以终。”这也可以说是他以最大的决心向自己的衰老作抗衡的“决心书”,以此鞭策他自己。在华罗索第二次心肌梗塞发病的,在医院中仍坚持工作,他指出:“我的哲学不是生命尽量延长,而是昼多做工作。”生病就该听医生的话,好好休息。但他这种顽强的精神还是可贵的。 总之,华罗庚的一切论述都贯穿一个总的精神,就是不断拼搏,不断奋进。 祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。 宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。 我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。 公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。 尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。 祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。 祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。在我国北宋时代,有一位博学多才、成就显著的科学家,他就是沈括(1031~1095)。 沈括,字存中,宋仁宗天圣九年(公元1031年)生于浙江钱塘(今浙江杭州市)一官僚家庭。他的父亲沈周(字望之)曾在泉州、开封、江宁做过地方官。母亲许氏,是一个有文化教养的妇女。 沈括自幼勤奋好读,在母亲的指导下,十四岁就读完了家中的藏书。后来他跟随父亲到过福建泉州、江苏润州(今镇江)、四川简州(今简阳)和京城开封等地,有机会接触社会,对当时人民的生活和生产情况有所了解,增长了不少见闻,也显示出了超人的才智。 沈括精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和政治家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的地位。 日本数学家三上义夫曾经说:沈括这样的人在全世界数学史上找不到,只有中国出了这么一个。英国著名科学史专家李约瑟博士称沈括的《梦溪笔谈》是中国科学史上的坐标。 高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。 高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。 有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。 第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。 就这样,一个伟大的数学家用欺骗的手段“战胜”了一个伟大的哲学家。 拉普拉斯和拉格朗日是19世纪初法国的两位数学家。拉普拉斯在数学上十分伟大,在政治上却是一个十足的小人,每次政权更迭,他都能够见风使舵,毫无政治操守可言。拉普拉斯曾把他的巨著《天体力学》献给拿破仑。拿破仑想惹恼拉普拉斯,责备他犯了一个明显的疏忽:“你写了一本关于世界体系的书,却一次也没有提到宇宙的创造者——上帝。” 拉普拉斯反驳说:“陛下,我不需要这样一个假设。” 当拿破仑向拉格朗日复述这句话时,拉格朗日说:“啊,但那是一个很好的假设,它说明了许多问题。” 两个神童19世纪初,在大西洋两岸出现了两个神童:一个是英国少年哈密顿,另一个是美国孩子科尔伯恩哈密顿的天才表现在语言学上,他8岁时就已经掌握了英文、拉丁文、希腊文和希伯莱文;12岁时已熟练地掌握了波斯语、阿拉伯语、马来语和孟加拉语,只是由于没有教科书,他才没有学习汉语。科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他4294967297是否是素数时,他立刻回答不是,因为它有641作为除数。类似的例子多得不胜枚举,但他不能解释他得出正确结论的过程。 人们把两个神童带到一起,这次会面是奇妙的,现在已经无法确知他们交谈了什么,但结果却是完全出人意料的:科尔伯恩的数学天赋完全“移植”给了哈密顿;哈密顿放弃了语言学,投身数学,成为爱尔兰历史上最伟大的数学家。 至于科尔伯恩,他的天才渐渐消失了。 数学家之死挪威数学家阿贝尔22岁的时候就对数学的发展做出了重大的贡献,但并不为当时的数学界所接受。他过着穷困潦倒的生活,这严重地影响了他的健康,他得了肺结核,这在当时是绝症。在最后的几个星期,他一直在考虑他的未婚姐的未来。他写信给他最好的朋友基尔豪:“她并不美丽,有着一头红发和雀斑,但她是一个可爱的女子。”虽然基尔豪和肯普从未见过面,但阿贝尔希望他们两个能够结婚。 肯普小姐照料阿贝尔度过了生命的最后时刻。在葬礼上,她与专程赶来的基尔豪相遇了。基尔豪帮助她克服了悲伤,他们相爱并结了婚。正如阿贝尔所希望的那样,基尔豪和肯普婚后十分幸福,他们经常到阿贝尔墓前去怀念他。随着岁月的流逝,他们发现越来越多的人从各地赶来,为阿贝尔在数学上的贡献向他表达他们迟到的敬意,而他们只是这一朝圣队伍中的一对普通的朝圣者。 1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。 他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。 第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。 数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。 费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。 在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。
你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。 故事如,祖 冲 之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。还有些资料,,华 罗 庚 华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。 华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。
第一写关于数学的名言罗素说:“数学是符号加逻辑”毕达哥拉斯说:“数支配着宇宙”哈尔莫斯说:“数学是一种别具匠心的艺术”米斯拉说:“数学是人类的思考中最高的成就”培根(英国哲学家)说:“数学是打开科学大门的钥匙”布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”黑格尔说:“数学是上帝描述自然的符号”魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”柏拉图说:“数学是一切知识中的最高形式”考特说:“数学是人类智慧皇冠上最灿烂的明珠”第二写关于数学的意义数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。第三写关于数学的小故事数学名人小故事-康托尔由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。
1.勾股定理:在任何一个直角三角形中,两条直角边的平方之和一定等于斜边的平方。这个定理在中国又称为"商高定理",在外国称为"毕达哥拉斯定理"。为什么一个定理有这么多名称呢?商高是公元前十一世纪的中国人。当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年。希腊另一位数学家欧几里德(Euclid,是公元前三百年左右的人)在编著《几何原本》时,认为这个定理是毕达哥达斯最早发现的,所以他就把这个定理称为"毕达哥拉斯定理",以后就流传开了。关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也。""此数"指的是"勾三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的。勾股定理的应用非常广泛。我国战国时期另一部古籍《路史后记十二注》中就有这样的记载:"禹治洪水决流江河,望山川之形,定高下之势,除滔天之灾,使注东海,无漫溺之患,此勾股之所系生也。"这段话的意思是说:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溺的灾害,是应用勾股定理的结果。 无声胜有声在数学上也不乏无声胜有声这种意境。1903年,在纽约的一次数学报告会上,数学家科乐上了讲台,他没有说一句话,只是用粉笔在黑板上写了两数的演算结果,一个是2的67次方-1,另一个是193707721×761838257287,两个算式的结果完全相同,这时,全场爆发出经久不息的掌声。这是为什么呢?因为科乐解决了两百年来一直没弄清的问题,即2是67次方-1是不是质数?现在既然它等于两个数的乘积,可以分解成两个因数,因此证明了2是67次方-1不是质数,而是合数。科尔只做了一个简短的无声的报告,可这是他花了3年中全部星期天的时间,才得出的结论。在这简单算式中所蕴含的勇气,毅力和努力,比洋洋洒洒的万言报告更具魅力。 2.有3个人去投宿,一晚30元.三个人每人掏了10元凑够30元交给了老板.后来老板说今天优惠只要25元就够了,拿出5元命令服务生退还给他们,服务生偷偷藏起了2元,然后,把剩下的3元钱分给了那三个人,每人分到1元.这样,一开始每人掏了10元,现在又退回1元,也就是10-1=9,每人只花了9元钱,3个人每人9元,3 X 9 = 27元 + 服务生藏起的2元=29元,还有一元钱去了哪里??? 答:题中的“3 X 9 = 27元 + 服务生藏起的2元=29元”其实是个陷阱,因为三人每人付9元所支出的27元中,有25元给了店老板,还有2元被服务生藏起,其实应该是3 X 9 = 27元 - 服务生藏起的2元=25元(付给老板)出题人利用了29和30的1元差价来迷惑人,其实29元的数字没有任何实际意义存在。 求采纳!!!!!!!!!!!!
1966年屈居于六平方米小屋的陈景润,借一盏昏暗的煤油灯,伏在床板上,用一支笔,耗去了几麻袋的草稿纸,居然攻克了世界著名数学难题“哥德巴赫猜想”中的(1+2),创造了距摘取这颗数论皇冠上的明珠(1+ 1)只是一步之遥的辉煌。他证明了“每个大偶数都是一个素数及一个不超过两个素数的乘积之和”,使他在哥德巴赫猜想的研究上居世界领先地位。这一结果国际上誉为“陈氏定理”,受到广泛征引。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。世界级的数学大师、美国学者阿 ·威尔(A?Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。 高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。 《自学成才的数学家》华罗庚小时候很有数学天份,但家庭遭变故,只得停学看店,靠自学成为了数学家…… 高斯印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的。高斯长大后,成为一位很伟大的数学家。 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的。 华罗庚一生都是在国难中挣扎。他常说他的一生中曾遭遇三大劫难。自先是在他童年时,家贫,失学,患重病,腿残废。第二次劫难是抗日战争期间,孤立闭塞,资料图书缺乏。第三次劫难是“文化大革命”,家被查抄,手槁散失,禁止他去图书馆,将他的助手与学生分配到外地等。在这等恶劣的环境下,要坚持工作,做出成就,需付出何等努力,需怎样坚强的毅力是可想而知的.早在40年代,华罗庚已是世界数论界的领袖数学家之一。但他不满足,不停步,宁肯另起炉灶,离开数论,去研究他不熟悉的代数与复分析,这又需要何等的毅力寻勇气! 华罗庚善于用几句形象化的语言将深刻的道理说出来。这些语言简意深,富于哲理,令人难忘。早在 SO年代,他就提出“天才在于积累,聪明在于勤奋”。 华罗庚虽然聪明过人,但从不提及自己的天分,而把比聪明重要得多的“勤奋”与“积累”作为成功的钥匙,反复教育年青人,要他们学数学做到“拳不离手,曲不离口”,经常锻炼自己。50年代中期,针对当时数学研究所有些青年,做出一些成果后,产生自满情绪,或在同一水平上不断写论文的倾问,华罗庚及时提出:“要有速度,还要有加速度。”所谓“速度”就是要出成果,所谓‘加速度”就是成果的质量要不断提高。“文化大革命”刚结束的,一些人,特别是青年人受到不良社会风气的影响,某些部门,急于求成,频繁地要求报成绩、评奖金等不符合科学规律的做法,导致了学风败坏。表现在粗制滥造,争名夺利,任意吹嘘。 1978年他在中国数学会成都会议上语重心长地提出:“早发表,晚评价。”后来又进一步提出:“努力在我,评价在人。”这实际上提出了科学发展及评价科学工作的客观规律,即科学工作要经过历史检验才能逐步确定其真实价值,这是不依赖人的主观意志为转移的客 观规律。” 华罗庚从不隐讳自己的弱点,只要能求得学问, 他宁肯暴露弱点。在他古稀之年去英国访问时,他把成语“不要班门弄斧”改成“弄斧必到班门”来鼓励自己。实际上,前一句话是要人隐讳缺点,不要暴露。华罗庚每到一个大学,是讲别人专长的东西,从而得到帮助呢,还是对别人不专长的,把讲学变成形式主义走过场?华罗庚选择前者,也就是“弄等必到班门”。早在50年代,华罗庚在《数论导引》的序言里就把搞数学比作下棋,号召大家找高手下,即与大数学家较量。中国象棋有个规则,那就是“观棋不语真君子,落子无悔大丈夫”。1981年,在淮南煤矿的一次演讲中,华罗康指出:“观棋不语非君子,互相帮助;落子有悔大丈夫,改正缺点。”意思是当你见到别人搞的东西有毛病时,一定要说,另一方面,当你发现自己搞的东西有毛病时,一定要修正。这才是“君子”与“丈夫”。针对一些人遇到困难就退缩,缺乏坚持到底的精神,华罗庚在给金坛中学写的条幅中写道:“人说不到黄河心不死,我说到了黄河心更坚。” 人老了,精力要衰退,这是自然规律。华罗庚深知年龄是不饶人的。1979年在英国时,他指出:“村老易空,人老易松,科学之道,戒之以空,戒之以松,我愿一辈子从实以终。”这也可以说是他以最大的决心向自己的衰老作抗衡的“决心书”,以此鞭策他自己。在华罗索第二次心肌梗塞发病的,在医院中仍坚持工作,他指出:“我的哲学不是生命尽量延长,而是昼多做工作。”生病就该听医生的话,好好休息。但他这种顽强的精神还是可贵的。 总之,华罗庚的一切论述都贯穿一个总的精神,就是不断拼搏,不断奋进。 祖冲之(429-500)的祖父名叫祖昌,在宋朝做了一个管理朝廷建筑的长官。祖冲之长在这样的家庭里,从小就读了不少书,人家都称赞他是个博学的青年。他特别爱好研究数学,也喜欢研究天文历法,经常观测太阳和星球运行的情况,并且做了详细记录。 宋孝武帝听到他的名气,派他到一个专门研究学术的官署“华林学省”工作。他对做官并没有兴趣,但是在那里,可以更加专心研究数学、天文了。 我国历代都有研究天文的官,并且根据研究天文的结果来制定历法。到了宋朝的时候,历法已经有很大进步,但是祖冲之认为还不够精确。他根据他长期观察的结果,创制出一部新的历法,叫做“大明历”(“大明”是宋孝武帝的年号)。这种历法测定的每一回归年(也就是两年冬至点之间的时间)的天数,跟现代科学测定的相差只有五十秒;测定月亮环行一周的天数,跟现代科学测定的相差不到一秒,可见它的精确程度了。 公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。 祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。 尽管当时社会十分动乱不安,但是祖冲之还是孜孜不倦地研究科学。他更大的成就是在数学方面。他曾经对古代数学著作《九章算术》作了注释,又编写一本《缀术》。他的最杰出贡献是求得相当精确的圆周率。经过长期的艰苦研究,他计算出圆周率在3.1415926和3.1415927之间,成为世界上最早把圆周率数值推算到七位数字以上的科学家。 祖冲之在科学发明上是个多面手,他造过一种指南车,随便车子怎样转弯,车上的铜人总是指着南方;他又造过“千里船”,在新亭江(在今南京市西南)上试航过,一天可以航行一百多里。他还利用水力转动石磨,舂米碾谷子,叫做“水碓磨”。 祖冲之晚年的时候,掌握宋朝禁卫军的萧道成灭了宋朝。在我国北宋时代,有一位博学多才、成就显著的科学家,他就是沈括(1031~1095)。 沈括,字存中,宋仁宗天圣九年(公元1031年)生于浙江钱塘(今浙江杭州市)一官僚家庭。他的父亲沈周(字望之)曾在泉州、开封、江宁做过地方官。母亲许氏,是一个有文化教养的妇女。 沈括自幼勤奋好读,在母亲的指导下,十四岁就读完了家中的藏书。后来他跟随父亲到过福建泉州、江苏润州(今镇江)、四川简州(今简阳)和京城开封等地,有机会接触社会,对当时人民的生活和生产情况有所了解,增长了不少见闻,也显示出了超人的才智。 沈括精通天文、数学、物理学、化学、生物学、地理学、农学和医学;他还是卓越的工程师、出色的军事家、外交家和政治家;同时,他博学善文,对方志律历、音乐、医药、卜算等无所不精。他晚年所著的《梦溪笔谈》详细记载了劳动人民在科学技术方面的卓越贡献和他自己的研究成果,反映了我国古代特别是北宋时期自然科学达到的辉煌成就。《梦溪笔谈》不仅是我国古代的学术宝库,而且在世界文化史上也有重要的地位。 日本数学家三上义夫曾经说:沈括这样的人在全世界数学史上找不到,只有中国出了这么一个。英国著名科学史专家李约瑟博士称沈括的《梦溪笔谈》是中国科学史上的坐标。 高斯是德国数学家、天文学家和物理学家,被誉为历史上伟大的数学家之一,和阿基米德、牛顿并列,同享盛名。 高斯1777年4月30日生于不伦瑞克的一个工匠家庭,1855年2月23日卒于格丁根。幼时家境贫困,但聪敏异常,受一贵族资助才进学校受教育。1795~1798年在格丁根大学学习1798年转入黑尔姆施泰特大学,翌年因证明代数基本定理获博士学位。从1807年起担任格丁根大学教授兼格丁根天文台台长直至逝世。 高斯的成就遍及数学的各个领域,在数论、非欧几何、微分几何、超几何级数、复变函数论以及椭圆函数论等方面均有开创性贡献。他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法进行研究。 瑞士数学家欧拉早年曾受过良好的神学教育,成为数学家后在俄国宫廷供职。 有一次,俄国女皇邀请法国哲学家狄德罗访问她的宫廷。狄德罗试图通过使朝臣改信无神论来证明他是值得被邀请的。女皇厌倦了,她命令欧拉去让这位哲学家闭嘴。于是,狄德罗被告知,一个有学问的数学家用代数证明了上帝的存在,要是他想听的话,这位数学家将当着所有朝臣的面给出这个证明。狄德罗高兴地接受了挑战。 第二天,在宫廷上,欧拉朝狄德罗走去,用一种非常肯定的声调一本正经地说:“先生,,因此上帝存在。请回答!”对狄德罗来说,这听起来好像有点道理,他困惑得不知说什么好。周围的人报以纵声大笑,使这个可怜的人觉得受了羞辱。他请求女皇答应他立即返回法国,女皇神态自若地答应了。 就这样,一个伟大的数学家用欺骗的手段“战胜”了一个伟大的哲学家。 拉普拉斯和拉格朗日是19世纪初法国的两位数学家。拉普拉斯在数学上十分伟大,在政治上却是一个十足的小人,每次政权更迭,他都能够见风使舵,毫无政治操守可言。拉普拉斯曾把他的巨著《天体力学》献给拿破仑。拿破仑想惹恼拉普拉斯,责备他犯了一个明显的疏忽:“你写了一本关于世界体系的书,却一次也没有提到宇宙的创造者——上帝。” 拉普拉斯反驳说:“陛下,我不需要这样一个假设。” 当拿破仑向拉格朗日复述这句话时,拉格朗日说:“啊,但那是一个很好的假设,它说明了许多问题。” 两个神童19世纪初,在大西洋两岸出现了两个神童:一个是英国少年哈密顿,另一个是美国孩子科尔伯恩哈密顿的天才表现在语言学上,他8岁时就已经掌握了英文、拉丁文、希腊文和希伯莱文;12岁时已熟练地掌握了波斯语、阿拉伯语、马来语和孟加拉语,只是由于没有教科书,他才没有学习汉语。科尔伯恩则在数学上表现出神奇的天才,小时候,有人问他4294967297是否是素数时,他立刻回答不是,因为它有641作为除数。类似的例子多得不胜枚举,但他不能解释他得出正确结论的过程。 人们把两个神童带到一起,这次会面是奇妙的,现在已经无法确知他们交谈了什么,但结果却是完全出人意料的:科尔伯恩的数学天赋完全“移植”给了哈密顿;哈密顿放弃了语言学,投身数学,成为爱尔兰历史上最伟大的数学家。 至于科尔伯恩,他的天才渐渐消失了。 数学家之死挪威数学家阿贝尔22岁的时候就对数学的发展做出了重大的贡献,但并不为当时的数学界所接受。他过着穷困潦倒的生活,这严重地影响了他的健康,他得了肺结核,这在当时是绝症。在最后的几个星期,他一直在考虑他的未婚姐的未来。他写信给他最好的朋友基尔豪:“她并不美丽,有着一头红发和雀斑,但她是一个可爱的女子。”虽然基尔豪和肯普从未见过面,但阿贝尔希望他们两个能够结婚。 肯普小姐照料阿贝尔度过了生命的最后时刻。在葬礼上,她与专程赶来的基尔豪相遇了。基尔豪帮助她克服了悲伤,他们相爱并结了婚。正如阿贝尔所希望的那样,基尔豪和肯普婚后十分幸福,他们经常到阿贝尔墓前去怀念他。随着岁月的流逝,他们发现越来越多的人从各地赶来,为阿贝尔在数学上的贡献向他表达他们迟到的敬意,而他们只是这一朝圣队伍中的一对普通的朝圣者。 1832年5月29日,法国年轻气盛的伽罗瓦为了所谓的“爱情与荣誉”打算和另外一个人决斗。他知道对手的枪法很好,自己获胜的希望很小,很可能会死去。他问自己,如何度过这最后的夜晚?在这之前,他曾写过两篇数学论文,但都被权威轻蔑地拒绝了:一次是被伟大的数学家柯西;另一次是被神圣的法兰西科学院他头脑中的东西是有价值的。整个晚上,他把飞逝的时间用来焦躁地一气写出他在科学上的遗言。在死亡之前尽快地写,把他丰富的思想中那些伟大的东西尽量写出来。他不时中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。 他在天亮之前那最后几个小时写出的东西,一劳永逸地为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一个极为重要的分支——群论。 第二天上午,在决斗场上,他被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去。”他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。 数学家的问题费马是17世纪法国图卢兹议会的议员,一个诚实而勤奋的人,同时也是历史上最杰出的数学业余爱好者。在其一生中,他给后代留下了大量极其美妙的定理;同时,由于一时的疏忽,也向后世的数学家们提出了严峻的挑战。 费马有一个习惯,他在读书的时候喜欢把思考的结果简略。有一次,他在阅读时写下了这样的话:“……将一个高于2次的幂分为两个同次的幂,这是不可能的。关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下。”这个定理现在被命名为“费马大定理”,即:不可能有满足xn+yn=zn这就是费马对后世的挑战。为了寻找这个定理的证明,后世无数的数学家发起了一次又一次的冲锋,但都败下阵来。1908年,一位德国富翁曾经悬赏10万马克的巨款,奖励第一个对“费马大定理”完全证明的人。自此定理提出后,数学家们奋斗了300多年,还是没有证出来。但这个定理肯定存在,费马知道它。 在数学上,“费马大定理”已成为一座比珠穆朗玛峰更高的山峰,人类的数学智慧只有一次达到过这样的高度,从那以后,再也没有达到过。
你可以把乘法口诀表写上去,在写一些关于数学家的故事等,,还可以出些题目,或者趣味数学,也可以把数学家的资料写上去。。。。 故事如,祖 冲 之 祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。 祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是 π的渐近分数。还有些资料,,华 罗 庚 华罗庚,中国现代数学家。1910年11月12日生于江苏省金坛县。1985年6月12日在日本东京逝世。华罗庚1924年初中毕业之后,在上海中华职业学校学习不到一年,因家贫辍学,他刻苦自修数学,1930年在《科学》上发表了关于代数方程式解法的文章,受到专家重视,被邀到清华大学工作,开始了数论的研究,1934年成为中华教育文化基金会研究员。1936年作为访问学者去英国剑桥大学工作。1938年回国,受聘为西南联合大学教授。1946年应苏联普林斯顿高等研究所邀请任研究员,并在普林斯顿大学执教。1948年始,他为伊利诺伊大学教授。 1950年回国,先后任清华大学教授、中国科技大学数学系主任、副校长,中国科学院数学研究所所长、中国科学院应用数学研究所所长、中国科学院副院长等。华罗庚还是第一、二、三、四、五届全国人大常委会委员和政协第六届全国委员会副主席。 华罗庚是国际上享有盛誉的数学家,他在解析数论、矩阵几何学、多复变函数论、偏微分方程等广泛数学领域中都做出卓越贡献,由于他的贡献,有许多定理、引理、不等式与方法都用他的名字命名。为了推广优选法,华罗庚亲自带领小分队去二十七个省普及应用数学方法达二十余年之久,取得了明显的经济效益和社会效益,为我国经济建设做出了重大贡献。

数学名人名言手抄报内容
数学语言亦对初学者而言感到困难。如何使这些字有着比日常用语更精确的意思,亦困恼着初学者,如开放和域等字在数学里有着特别的意思。今天我在这给大家整理了数学名人 名言 ,接下来随着我一起来看看吧! 数学名人名言(一) 1 . “数学家实际上是一个著迷者,不迷就没有数学。 ” ——诺瓦利斯 2. “没有大胆的猜测,就做不出伟大的发现。” ——牛顿 3. “数统治着宇宙。”——毕达哥拉斯 4. “数学,科学的女皇;数论,数学的女皇。”——高斯 5. “上帝创造了整数,所有其余的数都是人造的。” ——克隆内克 6. “上帝是一位算术家”——雅克比 7. “一个没有几分诗人气的数学家永远成不了一个完全的数学家。”——维尔斯特拉斯 8. “纯数学这门科学在其现代发展阶段,可以说是人类精神之最具独创性的创造。”——怀德海 9. “无限! 再也没有其他问题如此深刻地打动过人类的心灵。 ”——希尔伯特 10. “发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。”——达尔文 11. “给我五个系数,我将画出一头大象;给我六个系数,大象将会摇动尾巴。”——柯西 12. “纯数学是魔术家真正的魔杖。”——诺瓦列斯 13. “如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。”——柏拉图 14. “整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。”——伯克霍夫 15. “数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。”——A.埃博 16. “生命只为两件事,发展数学与教授数学” ——普尔森 17. “我之所以比笛卡儿看得远些, 是因为我站在巨人的肩上。” ——牛顿 18. “如果我继承可观的财产, 我在数学上可能没有多少价值了。”——拉格朗日 19. “我把数学看成是一件有意思的工作, 而不是想为自己建立什么纪念碑。可以肯定地说,我对别人的工作比自己的更喜欢。我对自己的工作总是不满意。”——拉格朗日 20. “一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。”——拉格朗日 21. “看在上帝的份上, 千万别放下工作! 这是你最好的药物。”——达朗贝尔 22. “有时候, 你一开始未能得到一个最简单,最美妙的证明, 但正是这样的证明才能深入到高等算术真理的奇妙联系中去。这是我们继续研究的动力,并且最能使我们有所发现。” ——高斯 23. “如果别人思考数学的真理像我一样深入持久, 他也会找到我的发现。”——高斯 24. “精巧的论证常常不是一蹴而就的,而是人们长期切磋积累的成果。我也是慢慢学来的,而且还要继续不断的学习。” ——阿贝尔 25 “异常抽象的问题, 必须讨论得异常清楚。” ——笛卡儿 26. "数学是人类知识活动留下来最具威力的知识工具,是一些现象的根源。数学是不变的,是客观存在的,上帝必以数学法则建造宇宙。”——笛卡儿 27. “直接向大师们而不是他们得的学生学习。” ——阿贝尔 28. “挑选好一个确定得研究对象, 锲而不舍。你可能永远达不到终点, 但是一路上准可以发现一些有趣的东西。” ——克莱因 29. “我决不把我的作品看做是个人的私事, 也不追求名誉和赞美。我只是为真理的进展竭尽所能。是我还是别的什么人, 对我来说无关紧要,重要的是它更接近于真理。” ——维尔斯特拉斯 30. “思维的运动形式通常是这样的:有意识的研究-潜意识的活动-有意识的研究。”——庞加莱 31. “人生就是持续的斗争, 如果我们偶尔享受到宁静, 那是我们先辈顽强地进行了斗争。假使我们的精神, 我们的警惕松懈片刻,我们将失去先辈为我们赢得的成果。” ——庞加莱 32. “如果我们想要预见数学的将来, 适当的途径是研究这门学科的历史和现状。”——庞加莱 33. “一个有科学创新能力的人不但要有科学知识,还要有文化艺术修养。”——钱学森 34. “干下去还有50%成功的希望,不干便是100%的失败。”—— 王菊珍 35. “一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。”——托尔斯泰 36. "数学的本质在於它的自由.”——康扥尔 37. “在数学的领域中, 提出问题的艺术比解答问题的艺术更为重要.”——康扥尔(Cantor) 38. "问题是数学的心脏”——哈尔莫斯 39. “只要一门科学分支能提出大量的问题, 它就充满着生命力, 而问题缺乏则预示着独立发展的终止或衰亡.” ——希尔伯特 40. “数学中的一些美丽定理具有这样的特性: 它们极易从事实中归纳出来, 但证明却隐藏的极深.”——高斯 数学名人名言(二) 一、在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。——毕达格拉斯 二、数学是符号加逻辑——罗素 三、数缺形时少直观,形缺数时难入微“又说”要打好数学基础有两个必经过程:先学习、接受“由薄到厚”;再消化、提炼“由厚到薄”。——华罗庚 四、数学是使灵魂过渡到真理和永存的捷径。——柏拉图 五、数支配着宇宙——毕达哥拉斯 六、我认为,说数学家选择课题的准则以及判断他是否成功的准则,主要的是美学准则,这是正确的。——冯·诺伊曼 七、数学,如果正确地看,不但拥有真理,而且也具有至高的美。——罗素 八、数学的本质在於它的自由。——康扥尔(Cantor) 九、数学之美是很自然明白地摆着的。——哈尔莫斯 十、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。——A。N。怀特海 十一、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。——A·N·怀德海 十二、无限!再也没有其他问题如此深刻地打动过人类的心灵。——希尔伯特 十三、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。——Hilbert 十四、发现的每一个新的群体在形式上都是数学的,因为我们不可能有其它的指导。——C。G。达尔文 十五、一个国家的科学水平可以用它消耗的数学来度量。——拉奥 十六、数学是一种别具匠心的艺术——哈尔莫斯 十七、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。——高斯 十八、我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。——贝尔斯 数学名人名言(三) 1. 时间是个常数,但对勤奋者来说,是个?变数?。用?分?来计算时间的人比用?小时?来计算时间的人时间多59倍。 ——俄国历史学家雷巴柯夫 2. 不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。 ——罗巴切夫斯基 3. 音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。 ——克莱因 4. 哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。??又因为这是使灵魂过渡到真理和永存的捷径。 ---柏拉图 5. 纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。——怀德海 6. 天才?请你看看我的臂肘吧。——拉码努扬 7. 问题是数学的心脏。 8. 人脑是这样一台计算机,它在一个相当低的准确水平上,非常可靠地进行工作。 --- 冯 · 诺伊曼 9. 宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。 ——华罗庚 10.数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而liuxuecom其它的科学经常处于被新发现的事实推翻的危险。数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。——爱因斯坦 11. 数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。 ——冯纽曼 12. 我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的人数是很少的。——贝尔斯 13. 我曾听到有人说我是数学的反对者,是数学的敌人,但没有人比我更尊重数学,因为它完成了我不曾得到其成就的业绩。――哥德 14. 我总是尽我的精力和才能来摆脱那种繁重而单调的计算。——纳皮尔 15. 无限!再也没有其他问题如此深刻地打动过人类的心灵。——D·希尔伯特 16. 新的数学方法和概念,常常比解决数学问题本身更重要。——华罗庚 17. 学数学,绝不会有过份的努力。——卡拉吉奥多里 18. 学习数学要多做习题,边做边思索。先知其然,然后知其所以然。——苏步青 19. 在数学中最令我欣喜的,是那些能够被证明的东西。——罗素 20. 哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。……又因为这是使灵魂过渡到真理和永存的捷径。——柏拉图 21. 这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。——A·N·怀德海 22. 整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。——G·D·伯克霍夫 23. 数学是各式各样的证明技巧。 维特根斯坦 24. 一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的发展和至善和国家繁荣昌盛密切相关。——拿破仑 25. 一个没有几分诗人气的数学家永远成不了一个完全的数学家。——维尔斯特拉斯 26. 以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者。——开普勒 27. 宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。——华罗庚 28. 在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。――康托尔 29. 在数学里,分辨何是重要,何事不重要,知所选择是很重要的。——广中平佑 30. 无限!再也没有其他问题如此深刻地打动过人类的心灵。 D希尔伯特 31. 修辞学使人善辨;凡有学者,皆成性格。 培根 32.法包含着一个民族经历多少世纪发展的故事,因而不能将它仅仅当作好象一本数学教科书里的定理公式来研究。为了知道法是什么,我们必须了解它的过去以及未来趋势。(美)霍姆斯 33. 数学主要的目标是公众的利益和自然现象的解释。 傅立叶 34. 数学指出函数的极大值往往在最不稳定的点取到,人追求极端就会失去内心的平衡。 35. 美丽的风景,听到优美的曲调等等一样而得到充分的快乐。 柯普宁 36. 新的数学方法和概念,常常比解决数学问题本身更重要。 华罗庚 37. 历史使人贤明,诗造成气质高雅的人,数学使人高尚,自然哲学使人深沉,道德使人稳重,而伦理学和修辞学则使人善于争论。 培根 38. 在数学中,我们发现真理的主要工具是归纳和模拟。 拉普拉斯 39. 数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。埃博 40. 这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。――AN怀特海 41. 第一是数学,第二是数学,第三是数学。 伦琴 42. 离家近。在人生最有力的3个10年里,需要扎扎实实地靠自己。 43. 数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。 开普勒 44. 数学家本质上是个着迷者,不迷就没有数学。 努瓦列斯 45. 数学的本质在于它的自由。――康托尔 46.爱情的确微妙,它不是数学不能加减,也不是物理不能演算,的确令人费解。有的爱情是来自想象,结果不一定如你所想。有的爱情来自渴望,你愈想要,愈得不到。像中了邪。所以司令(人)必须保持清醒。 47. 给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。 高斯 48. 数统治着宇宙。 毕达哥拉斯 49. 给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。 AL柯西 50. 1 上帝是一位算术家 雅克比 数学名人名言手抄报内容相关文章: ★数学名人名言手抄报 ★数学家名人名言手抄报 ★数学名人手抄报图片 ★数学手抄报数学名言 ★数学格言手抄报内容 ★数学名人故事手抄报图片大全 ★数学名人手抄报 ★数学名人手抄报图片 ★数学名人名言大全 ★名人名言手抄报大全

数学名人故事手抄报素材
有关数学名人故事手抄报素材锦集1、数学名人华罗庚1910年11月12日,华罗庚生于江苏省金坛县。他家境贫穷,决心努力学习。上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。从此,他喜欢上了数学。华罗庚上完初中一年级后,因家境贫困而失学了,只好替父母站柜台,但他仍然坚持自学数学。经过自己不懈的努力,他的《苏家驹之代数的五次方程式解法不能成立的理由》论文,被清华大学数学系主任熊庆来教授发现,邀请他来清华大学;华罗庚被聘为大学教师,这在清华大学的历史上是破天荒的事情。1936年夏,已经是杰出数学家的华罗庚,作为访问学者在英国剑桥大学工作两年。而此时抗日的消息传遍英国,他怀着强烈的爱国热忱,风尘仆仆地回到祖国,为西南联合大学讲课。华罗庚十分注意数学方法在工农业生产中的直接应用。他经常深入工厂进行指导,进行数学应用普及工作,并编写了科普读物。华罗庚也为青年树立了自学成才的光辉榜样,他是一位自学成才、没有大学毕业文凭的数学家。他说:“不怕困难,刻苦学习,是我学好数学最主要的经验”,“所谓天才就是靠坚持不断的努力。”华罗庚还是一位数学教育家,他培养了像王元、陈景润、陆启铿、杨乐、张广厚等一大批卓越数学家。为了培养青年一代,他为中学生编写了一些课外读物。2、数学名人小故事-康托尔由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。3、八岁的高斯发现了数学定理德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的'孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 ;

数学手抄报,要图文并茂的那种
第一写关于数学的名言罗素说:“数学是符号加逻辑”毕达哥拉斯说:“数支配着宇宙”哈尔莫斯说:“数学是一种别具匠心的艺术”米斯拉说:“数学是人类的思考中最高的成就”培根(英国哲学家)说:“数学是打开科学大门的钥匙”布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”黑格尔说:“数学是上帝描述自然的符号”魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”柏拉图说:“数学是一切知识中的最高形式”考特说:“数学是人类智慧皇冠上最灿烂的明珠”第二写关于数学的意义数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。第三写关于数学的小故事数学名人小故事-康托尔由于研究无穷时往往推出一些合乎逻辑的但又荒谬的结果(称为“悖论”),许多大数学家唯恐陷进去而采取退避三舍的态度。在1874—1876年期间,不到30岁的年轻德国数学家康托尔向神秘的无穷宣战。他靠着辛勤的汗水,成功地证明了一条直线上的点能够和一个平面上的点一一对应,也能和空间中的点一一对应。这样看起来,1厘米长的线段内的点与太平洋面上的点,以及整个地球内部的点都“一样多”,后来几年,康托尔对这类“无穷集合”问题发表了一系列文章,通过严格证明得出了许多惊人的结论。康托尔的创造性工作与传统的数学观念发生了尖锐冲突,遭到一些人的反对、攻击甚至谩骂。有人说,康托尔的集合论是一种“疾病”,康托尔的概念是“雾中之雾”,甚至说康托尔是“疯子”。来自数学权威们的巨大精神压力终于摧垮了康托尔,使他心力交瘁,患了精神分裂症,被送进精神病医院。真金不怕火炼,康托尔的思想终于大放光彩。1897年举行的第一次国际数学家会议上,他的成就得到承认,伟大的哲学家、数学家罗素称赞康托尔的工作“可能是这个时代所能夸耀的最巨大的工作。”可是这时康托尔仍然神志恍惚,不能从人们的崇敬中得到安慰和喜悦。1918年1月6日,康托尔在一家精神病院去世。第四,可以写关于数学的笑话小明小学数学考试,回来后他妈问他考得怎么样.小明说:"我基本上会做,但有一题3乘7,我怎么也想不出来.最后打铃了,我不管三七二十一就写了个18."奶奶:“1+2等于几?”孙子:“等于3。”奶奶:“答对了,因此你会得到3块糖。”孙子:“早知道是这样,我就说是等于5就好啦!”第五,可以写动物中的数学家蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成,组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料,蜂房的巢壁厚0.073毫米,误差极少。丹顶鹤总是成群结队迁飞,而且排成“人”字开。“人”字形的角度是110度,更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契?”蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺和圆规也很难画出像蜘蛛那样匀称的图案。冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学业家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
