数学家的小故事简短
1、陈景润: 陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。 理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。 他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗? 2、高斯: 高斯在哥廷根大学时,有次有事迟到,赶到教室时几乎都已经下课了。高斯走进教室后,发现教师不在,黑板上写着几道题。高斯以为这些题目是今天的作业题,便把题目记下来。当晚,他花了一整夜时间去研究这些数学题,没想到的是,这些题目异乎寻常地难。高斯直到天亮也只解决了一道题,第二天他很沮丧地找到老师,把这些都告诉了他。 他的老师异常震惊:“这些可都是数学史上最著名的难题啊,你竟然只花一个晚上就解决了一道?”而高斯解决的这道难题,就是困扰了数学家两千年之久的正十七边形尺规作图问题。那一年,高斯只有19岁! 3、华罗庚: 有一次正在看店的华罗庚在计算一道数学题,来了一位女士想买棉花,当她问华罗庚多少钱时,他完全沉醉于做题中,没有听见对方说的话,当他把答案算完随口说了一个数字,而女士以为他说的是棉花的价格,尖叫道:“怎么这么贵?”。 这时华罗庚才知道有人过来买棉花,当华罗庚把棉花卖给女士后才发现刚才自己的算题的草纸被妇女带走了,这可把华罗庚急坏了,不顾一切的去追那位女士,最终还是被他追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”。 那妇女生气地说:“这可是我花钱买的,可不是你送的”。华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了口气。回家后,又开始计算起数学题来…… 4、拉格朗日: 拉格朗日(1736—1813),法国著名的数学家、力学家、天文学家,变分法的开拓者和分析力学的奠基人。他曾获得过18世纪“欧洲最大之希望、欧洲最伟大的数学家”的赞誉。 拉格朗日出生在意大利的都灵。由于是长子,父亲一心想让他学习法律,然而,拉格朗日对法律毫无兴趣,偏偏喜爱上文学。 直到16岁时,拉格朗日仍十分偏爱文学,对数学尚未产生兴趣。16岁那年,他偶然读到一篇介绍牛顿微积分的文章《论分析方法的优点》,使他对牛顿产生了无限崇拜和敬仰之情,于是,他下决心要成为牛顿式的数学家。 5、祖冲之: 祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方. 晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究.在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。 在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误.以后他继续钻研,在科学技术方面作出极有价值的贡献.精确到小数点后第六位数的圆周率,便是他其中最杰出的成就之一.在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证.他指出当时所流行的何承天(公元370-447年)编定的历法有许多严重的错误.因此他便开始编制另一种新的历法。
Top1:伽利略质疑权威 伽利略17岁那年,考进了比萨大学医科专业。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?” “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。 Top2:小欧拉怀疑上帝 小欧拉在一个教会学校里读书。有次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。" 欧拉感到很奇怪:”天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?” 老师又一次被问住了。心中顿时升起一股怒气,这不仅是因为孩的问题使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。 在欧拉的年代,对上帝是绝对不能怀疑的。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。上帝也许是个别人编造出来的家伙,根本就不存在。 Top 3:8岁高斯发现了数学定理 德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 有一天高斯的数学教师情绪低落的一天。对同学们说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。” 结果不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。” 高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上写了这样的数:5050,他惊奇起来,这个8岁的小鬼怎么这样快就得到了答案呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 Top 4:陈景润攻克歌德巴赫猜想 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。 1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。 Top 5:陈景润理发 陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。 理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。 他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗?
华罗庚(1910年—1985年),出生于江苏常州金坛区,是当代自学成长的科学巨匠和誉满中外的著名数学家。 华罗庚一生致力于数学研究和发展,为中国数学发展作出的贡献,被誉为“中国现代数学之父”,“中国数学之神”,“人民数学家”。 华罗庚主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究;并解决了高斯完整三角和的估计难题、华林和塔里问题改进、一维射影几何基本定理证明、近代数论方法应用研究等。 他被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一;国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等;美国著名数学史家贝特曼称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院的院士”。 华罗庚小时候的故事: 1、华罗庚的父亲算是老来得子,在四十岁的时候才生下华罗庚,所以很担心他会长不大。因为那句“放在箩筐里可以生根,比较好养活”,于是想要叫他“箩根”,最后定为华罗庚。这就是他名字的由来。代表着父亲希望他健康成长的心愿。 2、从小他就喜欢思考,因为常常思考过于认真,便被同伴嘲笑称其为罗呆子。但是这依旧不会改变华罗庚热爱学习的心。他从小就家庭贫困,因为家里没钱交不起学费。不能上学的华罗庚没有放弃,他一边帮父亲料理杂货店,一边在家自学数学。初中辍学后,从高中到大学的数学课程,他只花了五年的时间便学完了。 3、华罗庚在小学读书的时候因为成绩不是太好,并没有拿到毕业证书。他是个非常爱玩的孩子,但是他很爱学数学。 有一天,他的数学老师出了一道古代的数学题考考班里的同学。那道题目是这样的:3个3个地数还余2;5个5个地数还余3;7个7个的数还余2。这样东西是多少?题目一说完,班里炸开了锅,热烈的讨论起来,但是谁也没有说出确切的答案,老师刚想说答案,华罗庚便举手回答:我知道,答案是23。他不仅说出了答案,而且他的算法也是大为不同,老师也被震惊了。 4、还有一次,他的数学老师出了一道求面积的数学题。华罗庚没有采用数学老师的方法,而是自己想出了一种更为简单的算法,这引起了老师的不满。老师在发练习本的时候,故意将华罗庚的练习本放在最后发,并且质疑华罗庚是怎么得出正确答案的。于是华罗庚将自己的解题方法说了一遍,果然简单多了。
欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。 事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。" 欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢? 他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。 在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。 回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,幻娑潦椤K?恋氖橹校?胁簧偈??椤? 爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。 小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。 父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。 小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。" 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。 父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。
Top1:伽利略质疑权威 伽利略17岁那年,考进了比萨大学医科专业。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?” “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。 Top2:小欧拉怀疑上帝 小欧拉在一个教会学校里读书。有次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。" 欧拉感到很奇怪:”天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?” 老师又一次被问住了。心中顿时升起一股怒气,这不仅是因为孩的问题使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。 在欧拉的年代,对上帝是绝对不能怀疑的。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。上帝也许是个别人编造出来的家伙,根本就不存在。 Top 3:8岁高斯发现了数学定理 德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。 有一天高斯的数学教师情绪低落的一天。对同学们说:“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。” 结果不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?” 老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。” 高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。” 数学老师本来想怒吼起来,可是一看石板上写了这样的数:5050,他惊奇起来,这个8岁的小鬼怎么这样快就得到了答案呢? 高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。 Top 4:陈景润攻克歌德巴赫猜想 陈景润一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”,所以有许多人亲切地称他为“数学王子”。但有谁会想到,他的成就源于一个故事。 1937年,勤奋的陈景润考上了福州英华书院,此时正值抗日战争时期,清华大学航空工程系主任留英博士沈元教授回福建奔丧,不想因战事被滞留家乡。几所大学得知消息,都想邀请沈教授前进去讲学,他谢绝了邀请。由于他是英华的校友,为了报达母校,他来到了这所中学为同学们讲授数学课。 一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,28= 5+23,100=11+89。每个大于4的偶数都可以表示为两个奇数之和。因为这个结论没有得到证明,所以还是一个猜想。大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。 它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。……”陈景润瞪着眼睛,听得入神。 Top 5:陈景润理发 陈景润是我国有名的数学家。他不爱逛公园,不爱遛马路,就爱学习。他学习起来,常常忘记了吃饭睡觉。 有一天,陈景润在吃中饭的时候,摸摸脑袋发现头发太长了,应该快去理一理,要不,人家看见了,还当他是个大姑娘呢。于是,他放下饭碗,就跑到理发店去了。 理发店里人很多,大家挨着次序理发。陈景润拿得牌子是三十八号。他想:轮到我还早着哩,时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把他弄懂,这是陈景润的脾气。 他看了看表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员喊三十八号吗?
华罗庚(1910年—1985年),出生于江苏常州金坛区,是当代自学成长的科学巨匠和誉满中外的著名数学家。 华罗庚一生致力于数学研究和发展,为中国数学发展作出的贡献,被誉为“中国现代数学之父”,“中国数学之神”,“人民数学家”。 华罗庚主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究;并解决了高斯完整三角和的估计难题、华林和塔里问题改进、一维射影几何基本定理证明、近代数论方法应用研究等。 他被列为芝加哥科学技术博物馆中当今世界88位数学伟人之一;国际上以华氏命名的数学科研成果有“华氏定理”、“华氏不等式”、“华—王方法”等;美国著名数学史家贝特曼称:“华罗庚是中国的爱因斯坦,足够成为全世界所有著名科学院的院士”。 华罗庚小时候的故事: 1、华罗庚的父亲算是老来得子,在四十岁的时候才生下华罗庚,所以很担心他会长不大。因为那句“放在箩筐里可以生根,比较好养活”,于是想要叫他“箩根”,最后定为华罗庚。这就是他名字的由来。代表着父亲希望他健康成长的心愿。 2、从小他就喜欢思考,因为常常思考过于认真,便被同伴嘲笑称其为罗呆子。但是这依旧不会改变华罗庚热爱学习的心。他从小就家庭贫困,因为家里没钱交不起学费。不能上学的华罗庚没有放弃,他一边帮父亲料理杂货店,一边在家自学数学。初中辍学后,从高中到大学的数学课程,他只花了五年的时间便学完了。 3、华罗庚在小学读书的时候因为成绩不是太好,并没有拿到毕业证书。他是个非常爱玩的孩子,但是他很爱学数学。 有一天,他的数学老师出了一道古代的数学题考考班里的同学。那道题目是这样的:3个3个地数还余2;5个5个地数还余3;7个7个的数还余2。这样东西是多少?题目一说完,班里炸开了锅,热烈的讨论起来,但是谁也没有说出确切的答案,老师刚想说答案,华罗庚便举手回答:我知道,答案是23。他不仅说出了答案,而且他的算法也是大为不同,老师也被震惊了。 4、还有一次,他的数学老师出了一道求面积的数学题。华罗庚没有采用数学老师的方法,而是自己想出了一种更为简单的算法,这引起了老师的不满。老师在发练习本的时候,故意将华罗庚的练习本放在最后发,并且质疑华罗庚是怎么得出正确答案的。于是华罗庚将自己的解题方法说了一遍,果然简单多了。
欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。 事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:"天有有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。" 欧拉感到很奇怪:"天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢? 他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。 在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。 回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,幻娑潦椤K?恋氖橹校?胁簧偈??椤? 爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。 小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。 父亲听了直摇头,心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。 小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:"那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。"小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。然后,小欧拉很自信地对爸爸说:"现在,篱笆也够了,面积也够了。" 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。 父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

数学家的故事(不超过50字)
1:古希腊数学家欧几里得: 古人学习几何更是困难,据说当学到‘一个等腰三角形的两个底角相等’这个定理时,好多人就无论怎样都学不会了,因此这个定理又叫‘驴子的梯子’。直到现在,平面几何的一些知识或者立体几何的一些定理仍然难住了一大批人,因此当国王多禄米向欧几里得讨教学习几何的捷径时,欧几里德告诉他:“在几何里面,没有为国王提供的捷径。” 2:古希腊数学家阿基米德: 叙拉古的亥厄洛国王委托金匠造一顶纯金的皇冠,但是怀疑 里面掺了银子,于是请阿基米德鉴定。一次阿基米德洗澡时,发现水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也不相等。根据这一道理,就可以判断皇冠是否掺假。阿基米德高兴得跳起来,赤身奔回家中,口中大呼:“尤 里卡!尤里卡!”(我发现了),于是便开始在大街上裸奔起来了,一直跑到家里。 3:瑞士的伯努利家族: 瑞士的伯努利家族是一个数学家族,三代出现了8位杰出的科学家。这个家族人的脾气都不太好,最奇怪的他们是开始都不是从事数学,可是到后来全部迷上了数学。父亲因为儿子得了数学大奖,嫉妒之下竟然一脚从窗户把儿子踹到了室外。 4:瑞士数学家欧拉: 欧拉小学就被开除了,因为他问的问题太多,给老师太多的难堪。有人说欧拉是先会算术后会说话的,欧拉很小就知道等周原理:在周长固定的所有图形,面积最大的一定是圆。 5:英国数学家牛顿: 在微积分发现的优先权的争执上,英国数学家和大陆数学家产生了严重纠纷。牛顿于是用了很多笔名来‘证明’莱布尼茨的知识不是原创而是抄袭牛顿的。其言辞之尖刻、辱骂之恶毒令人难以想像。莱布尼茨死后,牛顿还津津乐道的向别人讲述怎样用马甲使莱布尼茨伤透了心,并沾沾自喜。 扩展资料: (1)欧几里得(英文:Euclid;希腊文:Ευκλειδης ,公元前330年—公元前275年),古希腊人,数学家。被称为“几何之父”,他最著名的著作《几何原本》是欧洲数学的基础。 (2)阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称。 (3)瑞士的伯努利家族(也译作贝努力),一个家族3代人中产生了8位科学家,后裔有不少于120位被人们系统地追溯过,他们在数学、科学、技术、工程乃至法律、管理、文学、艺术等方面享有名望,有的甚至声名显赫。 (4)莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。写了大量的力学、分析学、几何学、变分法等的课本。 (5)艾萨克·牛顿(1643年1月4日—1727年3月31日)爵士,英国皇家学会会长,英国著名的物理学家,百科全书式的“全才”,著有《自然哲学的数学原理》、《光学》。 参考资料:百度百科——欧几里得 百度百科——阿基米德 百度百科——伯努利 百度百科——欧拉 百度百科——牛顿
1、数学家陈景润的小故事 数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思 考。 2、数学家鲁道夫的故事 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死 后别人便把这个数刻到他的墓碑上。 3、数学家雅谷伯努利的小故事 瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对 数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象 征他对数学热爱的双关语。 4、伽利略质疑 伽利略17岁那年,考进了比萨大学医科专业。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲 身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他 的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?” “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否 则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改 变。正因为这样,他才最终成为一代科学巨匠。 5、小欧拉机智改羊圈 小欧拉帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。 爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量 出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平 方米。他发现他的材料只够围100米的篱笆。若要围成长40米,宽15米的羊圈,其周长将是110米 (15+15+40+40=110)父亲感到很为难。 小欧拉却向父亲说,不用缩小羊圈,他有办法。父亲不相信小欧拉会有办法。心想:"世界上哪有这样 便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。 小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长 截短,缩短到25米。跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这 样一改,原来计划中的羊圈变成了一个25米边长的正方形。 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够 了,而且还稍稍大了一些。 父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯 努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是 这所大学最年轻的大学生。 扩展资料: 陈景润,1933年5月22日生于福建福州,当代数学家。1953年9月分配到北京四中任教。1955年2月 由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教 授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对 哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学 学科组成员。1992年任《数学学报》主编。1996年3月19日下午1点10分,陈景润在北京医院去世, 年仅63岁。
我国著名的数学家华罗庚,只读过初中,根本没上过大学。它的成功靠的就是勤奋、刻苦地自学。因为家中贫穷,初中辍学后在自家的小杂货店做生意,卖香烟、针线。然而,依然放不下数学。一年到头,几乎每一天都要花出十几个小时,来钻研数学。即使后来患上伤寒病,左脚终生残疾,仍没有因为病痛而停止对数学的研究。在不懈的勤奋下,终于成为了举世闻名的数学家。
1、数学家陈景润的小故事 数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。2、数学家鲁道夫的故事16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。3、数学家雅谷伯努利的小故事瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。4、伽利略质疑伽利略17岁那年,考进了比萨大学医科专业。有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。”比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”“我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。5、小欧拉机智改羊圈小欧拉帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。他发现他的材料只够围100米的篱笆。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难。小欧拉却向父亲说,不用缩小羊圈,他有办法。父亲不相信小欧拉会有办法。心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。扩展资料:陈景润,1933年5月22日生于福建福州,当代数学家。1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员。1992年任《数学学报》主编。1996年3月19日下午1点10分,陈景润在北京医院去世, 年仅63岁。
蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。
1、数学家陈景润的小故事 数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思 考。 2、数学家鲁道夫的故事 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死 后别人便把这个数刻到他的墓碑上。 3、数学家雅谷伯努利的小故事 瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对 数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象 征他对数学热爱的双关语。 4、伽利略质疑 伽利略17岁那年,考进了比萨大学医科专业。 有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲 身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。” 比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他 的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?” “我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。 伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否 则就不是真正的科学。”比罗教授被问倒了,下不了台。 后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改 变。正因为这样,他才最终成为一代科学巨匠。 5、小欧拉机智改羊圈 小欧拉帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。 爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量 出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平 方米。他发现他的材料只够围100米的篱笆。若要围成长40米,宽15米的羊圈,其周长将是110米 (15+15+40+40=110)父亲感到很为难。 小欧拉却向父亲说,不用缩小羊圈,他有办法。父亲不相信小欧拉会有办法。心想:"世界上哪有这样 便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。 小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长 截短,缩短到25米。跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这 样一改,原来计划中的羊圈变成了一个25米边长的正方形。 父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够 了,而且还稍稍大了一些。 父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯 努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是 这所大学最年轻的大学生。 扩展资料: 陈景润,1933年5月22日生于福建福州,当代数学家。1953年9月分配到北京四中任教。1955年2月 由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教 授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对 哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学 学科组成员。1992年任《数学学报》主编。1996年3月19日下午1点10分,陈景润在北京医院去世, 年仅63岁。
我国著名的数学家华罗庚,只读过初中,根本没上过大学。它的成功靠的就是勤奋、刻苦地自学。因为家中贫穷,初中辍学后在自家的小杂货店做生意,卖香烟、针线。然而,依然放不下数学。一年到头,几乎每一天都要花出十几个小时,来钻研数学。即使后来患上伤寒病,左脚终生残疾,仍没有因为病痛而停止对数学的研究。在不懈的勤奋下,终于成为了举世闻名的数学家。
1、数学家陈景润的小故事 数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。2、数学家鲁道夫的故事16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。3、数学家雅谷伯努利的小故事瑞士数学家雅谷伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。4、伽利略质疑伽利略17岁那年,考进了比萨大学医科专业。有一次上课,比罗教授讲胚胎学。他讲道:“母亲生男孩还是生女孩,是由父亲的强弱决定的。父亲身体强壮,母亲就生男孩;父亲身体衰弱,母亲就生女孩。”比罗教授的话音刚落,伽利略就举手说道:“老师,我有疑问。我的邻居,男的身体非常强壮,可他的妻子一连生了5个女儿。这与老师讲的正好相反,这该怎么解释?”“我是根据古希腊著名学者亚里士多德的观点讲的,不会错!”比罗教授想压服他。伽利略继续说:“难道亚里士多德讲的不符合事实,也要硬说是对的吗?科学一定要与事实符合,否则就不是真正的科学。”比罗教授被问倒了,下不了台。后来,伽利略果然受到了校方的批评,但是,他勇于坚持、好学善问、追求真理的精神却丝毫没有改变。正因为这样,他才最终成为一代科学巨匠。5、小欧拉机智改羊圈小欧拉帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。他发现他的材料只够围100米的篱笆。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110)父亲感到很为难。小欧拉却向父亲说,不用缩小羊圈,他有办法。父亲不相信小欧拉会有办法。心想:"世界上哪有这样便宜的事情?"但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形。父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲感到,让这么聪明的孩子放羊实在是及可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。扩展资料:陈景润,1933年5月22日生于福建福州,当代数学家。1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。曾任国家科委数学学科组成员。1992年任《数学学报》主编。1996年3月19日下午1点10分,陈景润在北京医院去世, 年仅63岁。
蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了。 蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142。蒲丰说:“这个数是π的近似值。每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确。”这就是著名的“蒲丰试验”。

十个数学家的故事 50个字
十个数学家的故事:1、前212年,古罗马军队突破城防,打进了叙拉古。年已75岁的阿基米德仍在潜心研究数学,证明他的几何题。凶神恶煞的士兵把刀剑指向了他的脑袋。阿基米德明白了将要发生的事情,坦然自若地说:“等一下杀我的头,让我把这条几何定理证完。”然而,无知而又残暴的罗马士兵,一刀砍掉了阿基米德的头颅。 2、华罗庚因病左腿残疾后,走路要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步履,他曾幽默地戏称为“圆与切线的运动”。在逆境中,他顽强地与命运抗争,誓言是:“我要用健全的头脑,代替不健全的双腿!” 3、南北朝时期伟大的数学家祖冲之,将圆周率计算到了小数点后面第七位。证明了圆周率位于3.1415926和3.1415127之间。比欧洲人得到同样的结果早了一千多年。 4、华罗庚小时候帮助父亲做生意,打算盘、记账。那时华罗庚站在柜台前,顾客一走就又埋头看书演算起数学题来。有时入了迷,竟忘了接待顾客,甚至把算题结果当作顾客应付的货款,使顾客吓了一跳。每逢遇到怠慢顾客的事情发生,父亲又气又急,说他念“天书”念呆了,要强行把书烧掉。争执发生时,华罗庚总是死死地抱着书不放。5、数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。 6、16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁道夫数,他死后别人便把这个数刻到他的墓碑上。 7、哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士。在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年。他有一个著名的猜想,就是在和欧拉的通信中提出来的。这成为数学史上一则脍炙人口的佳话。 8、高斯在上小学时,小学老师对学生很不负责任。这天,老师让大家做从一加到一百的计算题,不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字。老师也算过,答案也是5050。高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了。 9、欧拉,小时候因为问了老师星星有多少,触怒了老师的信条,被退学,结果成了一个牧童。但欧拉还热爱着学习,小欧拉成了这所大学最年轻的大学生。 10、阿基米德把皇冠和与它相同的真皇冠各放进一盆水里,测量溢出来的水,得知此皇冠比真皇冠轻,说明掺了金属。
1.Daniel Bernoulli(丹尼尔·伯努利)有一次在周游欧洲的火车上,和一个陌生人闲聊,他很谦虚地自我介绍说:“我是Daniel Bernoulli。"对方当时就很生气,说:“我还是Issac Newton(牛顿)呢。” 2.Hilbert(希尔伯特)曾经有一个学生,写过一篇论文来证明Riemann(黎曼)猜想,Hilbert非常赞赏。但是后来,这个学生去世了,Hilbert在葬礼上做演说。那天下着暴雨,所有人都很忧伤。希尔伯特首先说,这样的天才早夭让人痛心。接下来,Hilbert说,尽管这个人的证明有错,但是如果按照这条路走,应该有可能证明Riemann猜想,再接下来,Hilbert继续热烈地冒雨讲道:“事实上,让我们考虑一个单变量的复函数。” 3.Hilbert(希尔伯特)的另一个故事。一次在Hilbert的讨论班上,一个年轻人报告,其中用了一个很漂亮的定理,Hilbert说:“这真是一个妙不可言(wunderbaschon)的定理呀,是谁发现的?”那个年轻人茫然的站了很久,对Hilbert说:“是你。“ 4.L.V.Ahlfors(阿尔夫斯)和另一个美国的数学家共同获得了第一届的菲尔兹奖。当时正是二战各国封锁的时候,在从芬兰去瑞典领奖的时候,Ahlfors想搭火车去见一下妻子,可是身上只有10元钱。于是他翻出了菲尔兹奖章,把它拿到当铺当了。 5.Edmund Landau(E.朗道)的工作习惯很奇怪,用6个小时工作,6个小时休息,如此交替。他收到过无穷多关于证明了Fermat(费马)大定理的信件,后来实在没有精力处理,就印了一批卡片,样子大概是这个样子的: 亲爱的_____ 谢谢您寄来的关于Fermat大定理的证明。第一个错误在______页 ______行这使得证明无效。 6.Eddington(爱丁顿)是一个伟大的天文物理学家,下面这个故事是讲他如何吹牛的。Albert Einstein的广义相对论发表没有多久,有记者去采访Eddington,说听说世界上只有三个人懂得这套高深的理论,不知这三个人都是谁?Eddington低头沉思,很久没有回答。那个记者忍不住又问了一遍,Eddington说:“我正在想谁是第三个人。” 7.有一次上课Dantzig(丹齐克)迟到了,仰头看去,黑板上留了几个题目,他就抄了一下,回家后埋头苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业好像太难了,我所以现在才交,言下很是惭愧。几天之后,他的老师就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig 后来才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领域的未解决的问题,他给出的那个解法也就是单纯形法。上个世纪前十位的算法。 8.二十年代的莫斯科大学,学生被要求在十四个不同的数学分支参加十四门考试才能毕业;但是考试可以用相应领域的一项独立研究代替。所以,Kolmogorov(柯尔莫果洛夫)从来没有参加一门考试,他写了十四个不同方向的有新意的文章。Kolmogorov后来说,竟然有一篇文章是错的,不过那时考试已经通过了。 9.一次普林斯顿大学举行物理演讲,演讲者拿出一个幻灯片,上面极为分散的排列着一些实验数据,并且他试图说明这些数据在一条曲线上。Von Neumann(冯·诺伊曼)大概很不感兴趣,低声抱怨道:“至少它们是在同一个平面上。” 10.Riemann(黎曼)的父亲是个牧师,家里特别的穷,从小体弱多病,也打算做牧师。中学校长发现他在数学上比在神学上更有潜力,送给他一部Legendre(勒让德)的数论书。Legendre是一个伟大的法国数学家,他的书十分的晦涩难懂。 六天之后,Riemann就找到那个人把这本859页的名著还了,说:“这本书的确十分的精彩,我已经看懂了。”这个时候Riemann只有14岁。 扩展资料: '数学家是指一些对数学有深入了解的人士,将其所学知识运用于其工作上(特别是解决数学问题)。数学家专注于数、数据、集合、结构、空间、变化。专注于解决纯数学领域以外的问题的数学家称为应用数学家,他们运用他们的特殊知识与专业的方法解决许多在科学领域的显著问题。因为专注于广泛领域的问题、理论系统、定点结构。应用数学家经常研究与制定数学模型。
1、胡明复,数学家。中国以攻读数学在国外获得博士学位的第一人。参与创建了中国最早的综合性科学团体中国科学社和最早的综合性科学杂志——《科学》。 2、苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国著名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。 3、王见定,1982年1月毕业于北京工业大学,数学家、国际资深统计学会会员,长期从事数学、统计学、经济学的研究工作,作出了大范围的原创工作。 4、项武义,出生于浙江省乐清县大荆区智仁乡(今乐清市智仁乡上岙村),著名数学家,美国加州大学柏克莱分校教授。项武忠胞弟。 5、丘成桐(Shing-Tung Yau),原籍广东省蕉岭县,1949年出生于广东汕头,同年随父母移居香港,美籍华人,哈佛大学终身教授,国际知名数学家。任香港中文大学博文讲座教授兼数学科学研究所所长、清华大学丘成桐数学科学中心主任。 6、谷超豪(1926.5.15—2012.6.24),汉族,浙江温州人,数学家,中国共产党党员,中国民主同盟盟员,2009年度国家最高科学技术奖获得者。 7、陆家羲,1935年6月10日诞生于上海市。1983年10月31日在包头病故,中国现代数学家,国家自然科学一等奖获得者。1961年毕业于东北师范大学物理系。历任内蒙古包头市第二十四中学、第九中学物理教师。包头市组合数学专家。 8、林家翘(1916.7.7-2013.1.13),美国国籍,生于中国北京市,原籍福建福州,力学和数学家,天体物理学家, [1] 现代应用数学学派的领路人。 9、冯祖荀(1880-1940),数学教育家。中国现代数学教育的早期代表人物之一。1911年以后,多次担任北京大学数学系主任,对在中国传播现代数学知识有重要贡献。 10、钟开莱(1917年-2009年),世界知名的概率学家、华裔数学家、美国斯坦福大学数学系前系主任。1917年生于上海,浙江杭州人。1936年入清华大学物理系,1940年毕业于西南联合大学数学系,之后留校任数学系助教。 拓展资料 数学家专注于数、数据、集合、结构、空间、变化。专注于解决纯数学领域以外的问题的数学家称为应用数学家,他们运用他们的特殊知识与专业的方法解决许多在科学领域的显著问题。因为专注于广泛领域的问题、理论系统、定点结构。应用数学家经常研究与制定数学模型。 以上资源来自于百度词条-数学家
一、塞乐斯的故事 塞乐斯是古希腊第一位闻名世界的大数学家。他原是精明商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,勇于探索。他的家乡离埃及不太远,所以他常去埃及旅行。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。 二、阿基米德的故事 阿基米德把皇冠和与它相同的真皇冠各放进一盆水里,测量溢出来的水,得知此皇冠比真皇冠轻,说明掺了金属。 三、哥德巴赫故事 哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士。在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年。他有一个著名的猜想,就是在和欧拉的通信中提出来的。这成为数学史上一则脍炙人口的佳话。 四、雅谷伯努利的故事 数学家雅谷伯努利,对螺线有研究,他死后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原先一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。 五、欧拉的故事 欧拉,小时候因为问了老师星星有多少,触怒了老师的信条,被退学,结果成了一个牧童。但欧拉还热爱着学习,小欧拉成了这所大学最年轻的大学生。 六、鲁道夫的故事 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语。 七、华罗庚的故事 华罗庚特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产.记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天.”他的确为科学辛劳工作的最后一天,实现了自己的诺言. 八、数学陈景润的小故事 数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。 九、康托尔的故事 千多年来,科学家们接触到无穷,却又无力去把握和认识它,这的确是向人类提出的尖锐挑战。康托尔以其思维之独特,想象力之丰富,方法之新颖绘制了一幅人类智慧的精品——集合论和超穷数理论,令19、20世纪之交的整个数学界、甚至哲学界感到震惊。可以毫不夸张地讲,“关于数学无穷的革命几乎是由他一个人独立完成的。” 十、康威的故事 康威年少时就对数学很有强烈的兴趣:四岁时,其母发现他背诵二的次方;十一岁时,升读中学的面试,被问及他成长后想干什么,他回答想在剑桥当数学家。后来康威果然于剑桥大学修读数学。
蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”. 数学魔术家1981年的一个夏日,在印度举行了一场心算比赛.表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜.当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛.工作人员写出一个201位的大数,让求这个数的23次方根.运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案.而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多.这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”. 工作到最后一天的华罗庚华罗庚出生于江苏省,从小喜欢数学,而且非常聪明.1930年,19岁的华罗庚到清华大学读书.华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位.他对数论有很深的研究,得出了著名的华氏定理.他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产.记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天.”他的确为科学辛劳工作的最后一天,实现了自己的诺言.21世纪七大数学难题美国的克雷数学研究所于2000年5月24日在巴黎宣布了众多数学家评选的结果:对七个“千禧年数学难题”的每一个悬赏一百万美元.“千年大奖问题”公布以来,在世界数学界产生了强烈反响.这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动.认识和研究“千年大奖问题”已成为世界数学界的热点.不少国家的数学家正在组织联合攻关.可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程.卡儿,(1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一.他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学.数学和自然科Х⒄蛊鸬搅司薮蟮淖饔谩?笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段.笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今.笛卡儿在物理学,生理学和天文学方面也有许多独到之处.韦 达韦达(1540-1603),法国数学家.年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码.韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示 已知数、未知数及其乘幂,带来了代数理论研究的重大进步.韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”.1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式.主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》等,由于他贡献卓著,成为十六世纪法国最杰出的数学家.高斯印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的.高斯长大后,成为一位很伟大的数学家. 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的.数学家华罗庚小时候的轶事华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚.华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格.勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺.金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子.一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少? 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语
1.Daniel Bernoulli(丹尼尔·伯努利)有一次在周游欧洲的火车上,和一个陌生人闲聊,他很谦虚地自我介绍说:“我是Daniel Bernoulli。"对方当时就很生气,说:“我还是Issac Newton(牛顿)呢。” 2.Hilbert(希尔伯特)曾经有一个学生,写过一篇论文来证明Riemann(黎曼)猜想,Hilbert非常赞赏。但是后来,这个学生去世了,Hilbert在葬礼上做演说。那天下着暴雨,所有人都很忧伤。希尔伯特首先说,这样的天才早夭让人痛心。接下来,Hilbert说,尽管这个人的证明有错,但是如果按照这条路走,应该有可能证明Riemann猜想,再接下来,Hilbert继续热烈地冒雨讲道:“事实上,让我们考虑一个单变量的复函数。” 3.Hilbert(希尔伯特)的另一个故事。一次在Hilbert的讨论班上,一个年轻人报告,其中用了一个很漂亮的定理,Hilbert说:“这真是一个妙不可言(wunderbaschon)的定理呀,是谁发现的?”那个年轻人茫然的站了很久,对Hilbert说:“是你。“ 4.L.V.Ahlfors(阿尔夫斯)和另一个美国的数学家共同获得了第一届的菲尔兹奖。当时正是二战各国封锁的时候,在从芬兰去瑞典领奖的时候,Ahlfors想搭火车去见一下妻子,可是身上只有10元钱。于是他翻出了菲尔兹奖章,把它拿到当铺当了。 5.Edmund Landau(E.朗道)的工作习惯很奇怪,用6个小时工作,6个小时休息,如此交替。他收到过无穷多关于证明了Fermat(费马)大定理的信件,后来实在没有精力处理,就印了一批卡片,样子大概是这个样子的: 亲爱的_____ 谢谢您寄来的关于Fermat大定理的证明。第一个错误在______页 ______行这使得证明无效。 6.Eddington(爱丁顿)是一个伟大的天文物理学家,下面这个故事是讲他如何吹牛的。Albert Einstein的广义相对论发表没有多久,有记者去采访Eddington,说听说世界上只有三个人懂得这套高深的理论,不知这三个人都是谁?Eddington低头沉思,很久没有回答。那个记者忍不住又问了一遍,Eddington说:“我正在想谁是第三个人。” 7.有一次上课Dantzig(丹齐克)迟到了,仰头看去,黑板上留了几个题目,他就抄了一下,回家后埋头苦做。几个星期之后,疲惫的去找老师说,这件事情真的对不起,作业好像太难了,我所以现在才交,言下很是惭愧。几天之后,他的老师就把他召了过去,兴奋的告诉他说他太兴奋了。Dantzig 后来才知道原来黑板上的题目根本就不是什么家庭作业,而是老师说的本领域的未解决的问题,他给出的那个解法也就是单纯形法。上个世纪前十位的算法。 8.二十年代的莫斯科大学,学生被要求在十四个不同的数学分支参加十四门考试才能毕业;但是考试可以用相应领域的一项独立研究代替。所以,Kolmogorov(柯尔莫果洛夫)从来没有参加一门考试,他写了十四个不同方向的有新意的文章。Kolmogorov后来说,竟然有一篇文章是错的,不过那时考试已经通过了。 9.一次普林斯顿大学举行物理演讲,演讲者拿出一个幻灯片,上面极为分散的排列着一些实验数据,并且他试图说明这些数据在一条曲线上。Von Neumann(冯·诺伊曼)大概很不感兴趣,低声抱怨道:“至少它们是在同一个平面上。” 10.Riemann(黎曼)的父亲是个牧师,家里特别的穷,从小体弱多病,也打算做牧师。中学校长发现他在数学上比在神学上更有潜力,送给他一部Legendre(勒让德)的数论书。Legendre是一个伟大的法国数学家,他的书十分的晦涩难懂。 六天之后,Riemann就找到那个人把这本859页的名著还了,说:“这本书的确十分的精彩,我已经看懂了。”这个时候Riemann只有14岁。 扩展资料: '数学家是指一些对数学有深入了解的人士,将其所学知识运用于其工作上(特别是解决数学问题)。数学家专注于数、数据、集合、结构、空间、变化。专注于解决纯数学领域以外的问题的数学家称为应用数学家,他们运用他们的特殊知识与专业的方法解决许多在科学领域的显著问题。因为专注于广泛领域的问题、理论系统、定点结构。应用数学家经常研究与制定数学模型。
1、胡明复,数学家。中国以攻读数学在国外获得博士学位的第一人。参与创建了中国最早的综合性科学团体中国科学社和最早的综合性科学杂志——《科学》。 2、苏步青(1902年9月23日—2003年3月17日),浙江温州平阳人,祖籍福建省泉州市,中国科学院院士,中国著名的数学家、教育家,中国微分几何学派创始人,被誉为“东方国度上灿烂的数学明星”、“东方第一几何学家”、“数学之王”。 3、王见定,1982年1月毕业于北京工业大学,数学家、国际资深统计学会会员,长期从事数学、统计学、经济学的研究工作,作出了大范围的原创工作。 4、项武义,出生于浙江省乐清县大荆区智仁乡(今乐清市智仁乡上岙村),著名数学家,美国加州大学柏克莱分校教授。项武忠胞弟。 5、丘成桐(Shing-Tung Yau),原籍广东省蕉岭县,1949年出生于广东汕头,同年随父母移居香港,美籍华人,哈佛大学终身教授,国际知名数学家。任香港中文大学博文讲座教授兼数学科学研究所所长、清华大学丘成桐数学科学中心主任。 6、谷超豪(1926.5.15—2012.6.24),汉族,浙江温州人,数学家,中国共产党党员,中国民主同盟盟员,2009年度国家最高科学技术奖获得者。 7、陆家羲,1935年6月10日诞生于上海市。1983年10月31日在包头病故,中国现代数学家,国家自然科学一等奖获得者。1961年毕业于东北师范大学物理系。历任内蒙古包头市第二十四中学、第九中学物理教师。包头市组合数学专家。 8、林家翘(1916.7.7-2013.1.13),美国国籍,生于中国北京市,原籍福建福州,力学和数学家,天体物理学家, [1] 现代应用数学学派的领路人。 9、冯祖荀(1880-1940),数学教育家。中国现代数学教育的早期代表人物之一。1911年以后,多次担任北京大学数学系主任,对在中国传播现代数学知识有重要贡献。 10、钟开莱(1917年-2009年),世界知名的概率学家、华裔数学家、美国斯坦福大学数学系前系主任。1917年生于上海,浙江杭州人。1936年入清华大学物理系,1940年毕业于西南联合大学数学系,之后留校任数学系助教。 拓展资料 数学家专注于数、数据、集合、结构、空间、变化。专注于解决纯数学领域以外的问题的数学家称为应用数学家,他们运用他们的特殊知识与专业的方法解决许多在科学领域的显著问题。因为专注于广泛领域的问题、理论系统、定点结构。应用数学家经常研究与制定数学模型。 以上资源来自于百度词条-数学家
一、塞乐斯的故事 塞乐斯是古希腊第一位闻名世界的大数学家。他原是精明商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,勇于探索。他的家乡离埃及不太远,所以他常去埃及旅行。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。 二、阿基米德的故事 阿基米德把皇冠和与它相同的真皇冠各放进一盆水里,测量溢出来的水,得知此皇冠比真皇冠轻,说明掺了金属。 三、哥德巴赫故事 哥德巴赫是一个德国数学家,生于1690年,从1725年起当选为俄国彼得堡科学院院士。在彼得堡,哥德巴赫结识了大数学家欧拉,两人书信交往达30多年。他有一个著名的猜想,就是在和欧拉的通信中提出来的。这成为数学史上一则脍炙人口的佳话。 四、雅谷伯努利的故事 数学家雅谷伯努利,对螺线有研究,他死后,墓碑上就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原先一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语。 五、欧拉的故事 欧拉,小时候因为问了老师星星有多少,触怒了老师的信条,被退学,结果成了一个牧童。但欧拉还热爱着学习,小欧拉成了这所大学最年轻的大学生。 六、鲁道夫的故事 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语。 七、华罗庚的故事 华罗庚特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产.记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天.”他的确为科学辛劳工作的最后一天,实现了自己的诺言. 八、数学陈景润的小故事 数学家陈景润边思考问题边走路,撞到一棵树干上,头也不抬说:“对不起、对不起。”继续思考。 九、康托尔的故事 千多年来,科学家们接触到无穷,却又无力去把握和认识它,这的确是向人类提出的尖锐挑战。康托尔以其思维之独特,想象力之丰富,方法之新颖绘制了一幅人类智慧的精品——集合论和超穷数理论,令19、20世纪之交的整个数学界、甚至哲学界感到震惊。可以毫不夸张地讲,“关于数学无穷的革命几乎是由他一个人独立完成的。” 十、康威的故事 康威年少时就对数学很有强烈的兴趣:四岁时,其母发现他背诵二的次方;十一岁时,升读中学的面试,被问及他成长后想干什么,他回答想在剑桥当数学家。后来康威果然于剑桥大学修读数学。
蒲丰试验 一天,法国数学家蒲丰请许多朋友到家里,做了一次试验.蒲丰在桌子上铺好一张大白纸,白纸上画满了等距离的平行线,他又拿出很多等长的小针,小针的长度都是平行线的一半.蒲丰说:“请大家把这些小针往这张白纸上随便仍吧!”客人们按他说的做了.蒲丰的统计结果是:大家共掷2212次,其中小针与纸上平行线相交704次,2210÷704≈3.142.蒲丰说:“这个数是π的近似值.每次都会得到圆周率的近似值,而且投掷的次数越多,求出的圆周率近似值越精确.”这就是著名的“蒲丰试验”. 数学魔术家1981年的一个夏日,在印度举行了一场心算比赛.表演者是印度的一位37岁的妇女,她的名字叫沙贡塔娜.当天,她要以惊人的心算能力,与一台先进的电子计算机展开竞赛.工作人员写出一个201位的大数,让求这个数的23次方根.运算结果,沙贡塔娜只用了50秒钟就向观众报出了正确的答案.而计算机为了得出同样的答数,必须输入两万条指令,再进行计算,花费的时间比沙贡塔娜要多得多.这一奇闻,在国际上引起了轰动,沙贡塔娜被称为“数学魔术家”. 工作到最后一天的华罗庚华罗庚出生于江苏省,从小喜欢数学,而且非常聪明.1930年,19岁的华罗庚到清华大学读书.华罗庚在清华四年中,在熊庆来教授的指导下,刻苦学习,一连发表了十几篇论文,后来又被派到英国留学,获得博士学位.他对数论有很深的研究,得出了著名的华氏定理.他特别注意理论联系实际,走遍了20多个省、市、自治区,动员群众把优选法用于农业生产.记者在一次采访时问他:“你最大的愿望是什么?”他不加思索地回答:“工作到最后一天.”他的确为科学辛劳工作的最后一天,实现了自己的诺言.21世纪七大数学难题美国的克雷数学研究所于2000年5月24日在巴黎宣布了众多数学家评选的结果:对七个“千禧年数学难题”的每一个悬赏一百万美元.“千年大奖问题”公布以来,在世界数学界产生了强烈反响.这些问题都是关于数学基本理论的,但这些问题的解决将对数学理论的发展和应用的深化产生巨大推动.认识和研究“千年大奖问题”已成为世界数学界的热点.不少国家的数学家正在组织联合攻关.可以预期,“千年大奖问题”将会改变新世纪数学发展的历史进程.卡儿,(1596-1650)法国哲学家,数学家,物理学家,解析几何学奠基人之一.他认为数学是其他一切科学的理论和模型,提出了数学为基础,以演绎为核心的方法论,对后世的哲学.数学和自然科Х⒄蛊鸬搅司薮蟮淖饔谩?笛卡儿分析了几何学和代数学的优缺点,表示要寻求一种包含这两门科学的优点而没有它们的缺点的方法,这种方法就是用代数方法,来研究几何问题--解析几何,《几何学》确定了笛卡儿在数学史上的地位,《几何学》提出了解析几何学的主要思想和方法,标志着解析几何学的诞生,思格斯把它称为数学的转折点,以后人类进入变量数学阶段.笛卡儿还改进了韦达的符号记法,他用a、b、c……等表示已知数,用x、y、z……等表示未知数,创造了“=”,“”等符号,延用至今.笛卡儿在物理学,生理学和天文学方面也有许多独到之处.韦 达韦达(1540-1603),法国数学家.年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码.韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示 已知数、未知数及其乘幂,带来了代数理论研究的重大进步.韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”.1579年,韦达出版《应用于三角形的数学定律》,同时还发现,这是π的第一个分析表达式.主要著有《分析法入门》、《论方程的识别与修正》、《分析五章》、《应用于三角形的数学定律》等,由于他贡献卓著,成为十六世纪法国最杰出的数学家.高斯印象中曾听过一个故事:高斯是位小学二年级的学生,有一天他的数学老师因为事情已处理了一大半,虽然上课了,仍希望将其完成,因此打算出一题数学题目给学生练习,他的题目是:1+2+3+4+5+6+7+8+9+10=?,因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的,才有可能算出来,也就可以藉此利用这段时间来处理未完的事情,但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里,老师看到了很生气的训斥高斯,但是高斯却说他已经将答案算出来了,就是55,老师听了下了一跳,就问高斯如何算出来的,高斯答道,我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又11+11+11+11+11=55,我就是这么算的.高斯长大后,成为一位很伟大的数学家. 高斯小的时候能将难题变成简易,当然资质是很大的因素,但是他懂得观察,寻求规则,化难为简,却是值得我们学习与效法的.数学家华罗庚小时候的轶事华罗庚(1910——1982)出生于江苏太湖畔的金坛县,因出生时被父亲华老祥放于箩筐以图吉利,“进箩避邪,同庚百岁“,故取名罗庚.华罗庚从小便贪玩,也喜欢凑热闹,只是功课平平,有时还不及格.勉强上完小学,进了家乡的金坛中学,但仍贪玩,字又写得歪歪扭扭,做数学作业时倒时满认真地画来画去,但像涂鸦一般,所以上初中时的华罗庚仍不被老师喜欢的学生而且还常常挨戒尺.金坛中学的一位名叫王维克的教员却独有慧眼,他研究了华罗庚涂鸦的本子才发现这许多涂改的地方正反映他解题时探索的多种路子.一次王维克老师给学生讲[孙子算经]出了这样一道题:”今有物不知其数,三三数之剩其二,五五数剩其三,七七数剩其二,问物几何?“正在大家沉默之际,有个学生站起来,大家一看,原来是向来为人瞧不起的华罗庚,当时他才十四岁,你猜一猜华罗庚他说出是多少? 16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上. 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”.这是一句既刻划螺线性质又象征他对数学热爱的双关语

数学家的故事(要有名),50字左右
1、高斯是德国数学家,他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数)的对称性,然后就像求得一般算术级数和的过程一样。 把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 2、16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语 3、20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父"。 1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁. 4、伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。 1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 5、刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。 刘徽的一生是为数学刻苦探求的一生,他虽然地位低下,但人格高尚,他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。 6、陈省身的学生,因解决微分几何的许多重大难题而获得数学界菲尔奖。丘成桐的第一项重要研究成果是解决了微分几何的著名难题—卡拉比猜想,从此名声鹊起。他把微分方程应用于复变函数、代数几何等领域取得了非凡成果,比如解决了高维闵考夫斯基问题,证明了塞凡利猜想等。 这一系列的出色工作终于使他成为菲尔兹奖得主。翌瓷回国后华罗庚开创了中国的近代数学,并建立了中科院数学研究,培养了大批数学家如陈景润,王元等号称华学派,后来致力于应用数学,将数学应用于工业生产,推广“优选法”。
高斯是德国数学家,他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。 刘徽的一生是为数学刻苦探求的一生,他虽然地位低下,但人格高尚,他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
高斯是德国数学家,他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 相关问题全部
华罗庚,世界著名数学家是中国解析数论,矩阵几何学。典型群,自安函数论。等多方面研究的创始人和开拓者。1910年11月12日出生于中国江苏金坛县。1985年6月12日,病逝于日本东京。国际上以华氏命名的数学科研成果就有。华氏定理,怀依一华不等氏,华氏不等式,普劳威尔一加当华定理,华氏算子,华一王方法等。
高斯是德国数学家,他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。 刘徽的一生是为数学刻苦探求的一生,他虽然地位低下,但人格高尚,他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
高斯是德国数学家,他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 相关问题全部
华罗庚,世界著名数学家是中国解析数论,矩阵几何学。典型群,自安函数论。等多方面研究的创始人和开拓者。1910年11月12日出生于中国江苏金坛县。1985年6月12日,病逝于日本东京。国际上以华氏命名的数学科研成果就有。华氏定理,怀依一华不等氏,华氏不等式,普劳威尔一加当华定理,华氏算子,华一王方法等。

中国数学家的故事(50字以下)
拉玛奴江 1962年12月22日印度发行弓一张纪念邮票。这张邮票是为纪念印度的「国宝」锡里尼哇沙‧拉玛奴江(Srinivasa Ramanujan)诞生七十五周年而发行的。 拉玛奴江是一个生於南印度没落的贫穷婆罗门家庭,没有受过大学育,靠自学及艰苦钻研数学,后来成为一个闻名国际的数学家。 在数学家中,以贫穷家庭出身,而且能在没有研究数学的环境裏,孤独的工作,发现了一些深入的结果的人是不太多。他到了二十七岁时才获得真正数学家的教导,他的才华像彗星突然出现长空,耀眼令人侧目。可惜的是肺病却蚕食了他的生命,他在三十三岁时悄然逝去。 他是淡米尔人,生於1887年12月22日,父亲是一间布店裏的小职员。小时候他大部份的时间是在祖母家裏度过。从小他就喜欢思考问题,曾问老师在天空闪耀的星座的距离,以及地球赤道的长度。在十二岁时始对数学发生兴趣,曾问高班同学:「什麼是数学的最高真理?」当时同学告诉他「毕达高拉斯定理」(即中国人称「商高定理」)是可以作为代表,引起了他对几何的兴趣。 有一天一个老师讲:「三十个果子给三十个人平分,每一个人得到一个。同样的十四个果子给十四个人平分,每一个人得一个果子。」从这裏老师下了结论:任何数给自己除得到是一。拉玛奴江觉得不对,马上站起来问:「是否每一个人也得到一个?」这时数字的奇妙性质引起了他的注意,也差不多在这个时候他对等差,等比级数的性质自己作了研究。 在十三岁时,高班的同学借给他一本Loney 的〈三角学〉一书(以,前,有一些学校采用此书为高中课,中译本书名为〈龙氏三角学〉),他很快把整夬书的习题解完。第二年他得到了正弦和余弦函数的无穷级数展开式,后来他才知这是著名的Euler 公式,他心中有点失望,於是把自己结果的草稿,偷偷地放到裏的屋梁上。 他十五岁时,朋友借给了他二厚册英国人卡尔(Carr)写「纯数的应用数学基本结果大要」一书。这书是写得相当枯燥无味的,罗列了在代数、微积分、三角学和解析几何的六千个定理和公式。这本书对他来说是本好书,他自己证明了其中的一些定理,而以后他研究的基础全是这书给出的。 在1930年他进入了家乡的政府学院,由於贫穷和入学试成绩优越,他获得奖学金,可是在学院裏他太专心於自己善羑的数学,而忽略了其他科目,结果年考不及格而失去了奖学金。在1906年他转到另外一间学院读二年级并参加1907年的「文科第一考试」,。是又失败了。 在1907年到1910年之间,他住在外面,找不到任何工作,有时替朋友补习以换取一些吃的东西。在这段期间,他自己研究魔方阵、连环分数、超几何级数、椭圆积分及一些数论问题,他把自己得到的结果写在二本记事簿裏,生活不安定不能使到他对数学的爱好减少,一个善良的邻居老太太,看他生活困难,几次在中餐时邀他在家裏吃些东西。 根据印度的习俗,他家人在1909年为他安排了婚事,妻子是一个九岁的女孩。在1910年他是二十三岁了,有了家而且因是长子,必须帮助家一些费用,他不得不极力寻找工作,后来朋友推荐他去找印度官员拉奥。 拉奥本身是一个有钱的印度官员,也是印度数学会的创办人之一,认为拉玛奴江不适合做其他工作,很难介绍工作给柋,因此宁愿每个月给他一些钱,够他生活不必去工作,而他自己可以作研究。他很赏识拉玛奴江的数学才能。 接玛奴江只好接受这些钱,又继续他的究工作。每天傍晚时分才在马德拉斯(Madras)的海边散步和朋友聊天作为休息。有一天一个老朋友遇到他,就对他说:「人们称赞你有数学的天才!」拉玛奴江听了笑道:「天才?!请你看看我的肘吧!」他的肘的皮肤显得又黑又厚。他解释他日夜在石板上计算,用破布来擦掉石板上的字太花时间了,他每几分钟就用肘直接擦石板的字。朋友问他既然要作这麼多计算为甚麼不用纸来写。拉玛奴江说他连吃饭都成问题,那裏有钱去买大量的纸来用,原来接玛奴江觉得依靠别人生活心里是很惭愧,已经有一个月不去拿钱了。 很幸运拉玛奴江获得了奖学金,在1913年5月开始,他每个月获得七十五卢比。不久他的朋友协助他用英文写了一封信给英国剑桥大学的著名数学家哈地球(G.H.Hardy)教授,在这信裏列下了他以前研究得到的一百二十个定理和公式。 哈地教授看到他的一些结果,有些是重新发现一百年前大数学家的结果,有一些是错误,有一些是非常深入困难,经过许多波折,拉玛奴江总算来到了英国。哈地认为要教他现代数学,如果照常规从头学起,很可能会对拉玛奴江的才能有损害。而他又不能停留在对现代数学无知的状态。因此哈地用自己独特的方法帮助他学习,终於拉玛奴江掌握了较健全的现代分析理论的知识。比他教给拉玛奴江的还多。 从1914到1918年拉玛奴江和教授写了许多重要的数学论文。由於他是个虔诚的婆罗门教徒,绝对奉行素食主义,在英国生活那段时间,他自己煮自己的食物,而常常因研究而忘记吃饭,他的身体越来越衰弱,后来常感到身上有无名的疼痛。 后来才发现他患上了无法医治的肺病。在英国医院住了一个时期。哈地教授讲他在病中的一个故事: 有一天哈地乘了一辆出租汽车去看他,这车牌号码是1729。哈地对拉玛奴江讲出了这个数字,看来没有甚麼意义。可是拉玛奴江想一下马上回答:「这是最小的整数能用二种方法来表示二个整数的立方的和。」 (1729=13+123=93+103) 拉玛奴江被称为数学的预言家,他死后已经有五十四年了,可是他的一些预测的结果,还是目前数学家正想法证明的。 他在1920年4月26日死於麻特拉斯,马德拉斯大学后来建立了一个高等数学研究所,就用他的名字来命名。而在1974年还准备在研究所门前为他矗立一个大理半身像。 如果他英灵有知,或许他会说:「不必替我立像,应该求求那些正在饿死的小孩,他们有许多会是未来的拉玛奴江!」 Top 高斯 高斯-被誉为「数学王子」的德国大数学家,物理学家和天文学家。 德国大数学家高斯 ( Carl Friedrich Gauss 1777-1855 ) 是德国最伟大,最杰出的科学家,如果单纯以他的数学成就来说,很少在一门数学的分支里没有用到他的一些研究成果 贫寒家庭出身 高斯的祖父是农民,父亲除了从事园艺的工作外,也当过各色各样的杂工,如护堤员、建筑工等等。父亲由於贫穷,本身没有受过什麼教育。 母亲在三十四岁时才结婚,三十五岁生下了高斯。她是一名石匠的女儿,有一个很聪明的弟弟,他手巧心灵是当地出名的织绸能手,高斯的这位舅舅,对小高斯很照顾,有机会就教育他,把他所知道的一些知识传授给他。而父亲可以说是一名”大老粗”,认为只有力气能挣钱,学问对穷人是没有用的。 高斯在晚年喜欢对自己的小孙儿讲述自己小时候的故事,他说他在还不会讲话的时候,就已经学会计算了。 他还不到三岁的时候,有一天他观看父亲在计算受他管辖的工人们的周薪。父亲在喃喃的计数,最后长叹的一声表示总算把钱算出来。 父亲念出钱数,准备写下时,身边传来微小的声音:「爸爸!算错了,钱应该是这样.....。」 父亲惊异地再算一次,果然小高斯讲的数是正确的,奇特的地方是没有人教过高斯怎麼样计算,而小高斯平日靠观察,在大人不知不觉时,他自己学会了计算。 另外一个著名的故事亦可以说明高斯很小时就有很快的计算能力。当他还在小学读书时,有一天,算术老师要求全班同学算出以下的算式:1 + 2 + 3 + 4 + ....+ 98 + 99 + 100 = ?在老师把问题讲完不久,高斯就在他的小石板上端端正正地写下答案5050,而其他孩子算到头昏脑胀,还是算不出来。最后只有高斯的答案是正确无误。 原来1 +100= 1012 + 99 = 1013 + 98 = 101...50 + 51 = 101 前后两项两两相加,就成了50对和都是 101的配对了即 101 × 50 = 5050。 按:今用公式 表示 1 + 2 + ... + n 高斯的家里很穷,在冬天晚上吃完饭后,父亲就要高斯上床睡觉,这样可以节省燃料和灯油。高斯很喜欢读书,他往往带了一捆芜菁上他的顶楼去,他把芜菁当中挖空,塞进用粗棉卷成的灯芯,用一些油脂当烛油,於是就在这发出微弱光亮的灯下,专心地看书。等到疲劳和寒冷压倒他时,他才钻进被窝睡觉。 高斯的算术老师本来是对学生态度不好,他常认为自己在穷乡僻壤教书是怀才不遇,现在发现了「神童」,他是很高兴。但是很快他就感到惭愧,觉得自己懂的数学不多,不能对高斯有什麼帮助。 他去城里自掏腰包买了一本数学书送给高斯,高斯很高兴和比他大差不多十岁的老师的助手一起学习这本书。这个小孩和那个少年建立起深厚的感情,他们花许多时间讨论这里面的东西。 高斯在十一岁的时候就发现了二项式定理 ( x + y )n的一般情形,这里 n可以是正负整数或正负分数。当他还是一个小学生时就对无穷的问题注意了。 有一天高斯在走回家时,一面走一面全神贯注地看书,不知不觉走进了布伦斯维克 ( Braunschweig ) 宫的庭园,这时布伦斯维克公爵夫人看到这个小孩那麼喜欢读书,於是就和他交谈,她发现他完全明白所读的书的深奥内容。 公爵夫人回去报告给公爵知道,公爵也听说过在他所管辖的领地有一个聪明小孩的故事,於是就派人把高斯叫去宫殿。 费迪南公爵 ( DukeFerdinand ) 很喜欢这个害羞的孩子,也赏识他的才能,於是决定给他经济援助,让他有机会受高深教育,费迪南公爵对高斯的照顾是有利的,不然高斯的父亲是反对孩子读太多书,他总认为工作赚钱比去做什麼数学研究是更有用些,那高斯又怎麼会成材呢? 高斯的学校生涯 在费迪南公爵的善意帮助下,十五岁的高斯进入一间著名的学院(程度相当於高中和大学之间)。在那里他学习了古代和现代语言,同时也开始对高等数学作研究。 他专心阅读牛顿、欧拉、拉格朗日这些欧洲著名数学家的作品。他对牛顿的工作特别钦佩,并很快地掌握了牛顿的微积分理论。 1795年10月他离开家乡的学院到哥庭根 ( Gottingen )去念大学。哥庭根大学在德国很有名,它的丰富数学藏书吸引了高斯。许多外国学生也到那里学习语言、神学、法律或医学。这是一个学术风气很浓厚的城市。 高斯这时候不知道要读什麼系,语言系呢还是数学系?如果以实用观点来看,学数学以后找生活是不大容易的。 可是在他十八岁的前夕,现在数学上的一个新发现使他决定终生研究数学。这发现在数学史上是很重要的。 我们知道当 n ≥ 3 时,正 n 边形是指那些每一边都相等,内角也一样的 n 边多边形。 希腊的数学家早知道用圆规和没有刻度的直尺画出正三、四、五、十五边形。但是在这之后的二千多年以来没有人知道怎麼用直尺和圆规构造正十一边、十三边、十四边、十七边多边形。 还不到十八岁的高斯发现了:一个正 n 边形可以用直尺和圆规画出当且仅当 n 是底下两种形式之一: k= 0,1,2, ... 十七世纪时法国数学家费马 ( Fermat ) 以为公式在 k = 0, 1, 2, 3, ....给出素数。(事实上,目前只确定 F0,F1,F2,F4是质数,F5不是)。 高斯用代数方法解决了二千多年来的几何难题,而且找到正十七边形的直尺与圆规的作法。他是那麼的兴奋,因此决定一生研究数学。据说,他还表示希望死后在他的墓碑上能刻上一个正十七边形,以纪念他少年时最重要的数学发现。 1799年高斯呈上他的博士论文,这论文证明了代数一个重要的定理:任何一元代数方程都有根。这结果数学上称为”代数基本定理”。 事实上在高斯之间有许多数学家认为已给出了这个结果的证明,可是没有一个证是严密的,高斯是第一个数学家给出严密无误的证明,高斯认为这个定理是很重要的,在他一生中给了一共四个不同的证明。高斯没有钱印刷他的学位论文,还好费迪南公爵给他钱印刷。 二十岁时高斯在他的日记上写,他有许多数学想法出现在脑海中,由於时间不定,因此只能记录一小部份。幸亏他把研究的成果写成一本叫<算学研究>,并且在二十四岁时出版,这书是用拉丁文写,原来有八章,由於钱不够,只好印七章,这书可以说是数论第一本有系统的著作,高斯第一次介绍”同余”这个概念。 Top 巴比仑 灿烂的古巴比仑文化 发源於现在土耳其境内的底格里斯河(Tigris)和幼发拉底河 (Euphrates) ,向东南方流入波斯湾。河流经过现在的叙利亚和伊拉克。 现在我们生活的「星期制度」是源於古代巴比仑。巴比仑人把一年分为十二个月,七天组成一个星期,一个星期的最后一天减少工作,用来举行宗教礼拜,称为安息日-这就是我们现在的礼拜日。 我们现在一天二十四小时,一小时有六十分,一分有六十秒这种时间分法就是巴比仑人创立的。在数学上把圆分三百六十度,一度有六十分这类六十进位制的角度衡量也是巴比仑人的贡献。 古代巴比仑人的书写工具是很奇特的,他们利用到处可见的粘泥,制成一块块长方薄饼,这就是他们的纸。然后用一端磨尖的金属棒当笔写成了「楔形文字」 (cuneiform) ,形成泥板书。 希腊的旅行家曾记载巴比仑人为农业的需要而兴建的运河,工程的宏大令人惊叹。而城市建筑的豪美,商业贸易的频繁,有许多人从事法律、宗教、科学、艺术、建筑、教育及机械工程的研究,这是当时其他国家少有的。 可是巴比仑盛极一时,以后就衰亡了,许多城市埋葬在黄土沙里,巴比仑成为传说神话般的国土,人们在地面上找不到这国家的痕迹,曾是闻名各地的「空中花园」埋在几十米的黄土下,上面只有野羊奔跑的荒原。 到了十九世纪四十年代,法国和英国考古学家发掘了古城及获得很多文物,世人才能重新目睹这个地面上失踪的古国,了解其文化兴盛的情况。特别是英国人拉雅( Loyard)在尼尼微(Nineveh)挖掘到皇家图书馆,两间房藏有二万六千多件泥板书,包含历史、文学、外交、商业、科学、医药的记录。巴比仑人知道五百种药,懂得医治像耳痛及眼炎,而生物学家记载几百种植物的名字及其性质。化学家懂得一些矿物的性质,除了药用外,而且还利用提炼金属,制陶器及制玻璃的水平很高。 有这样高文化水平的民族,他们的数学也该是不错吧?这里就谈谈他们这方面的贡献。 巴比仑人的记数法 巴比仑人用两种进位法:一种是十进位,另外一种是六十进位。 十进位是我们现在普通日常生活中所用的方法,打算盘的「逢十进一」就是基於这种原理。 巴比仑人没有算盘,但他们发明了这样的「计算工具」协助计算(图一)。在地上挖三个长条小槽,或者特制有三个小糟的泥块,用一些金属小球代表数字。 比方说:巴比仑城南的农民交来了 429 袋的麦作为国王的税金,而城东的农民交来了 253 袋的麦。因此国王的仓库增加了 429 + 253 = 682 袋粮食。我们用笔算一下子就得到答案,可是巴比仑人却是先在泥板上的小槽上分别放上:4 个, 2 个,9 个的金属球,这代表了 429。然后在置放 4 个金属球的小槽上添加 2 个小球,中间槽上添加 5 个小球,最后的小槽上添加3 个小球。 现在最后一列的小槽上有 12 个小球,巴比仑人就取掉十个,在中间那个槽里添上 1 个小球-这也就是「逢十进一」。 最后泥板上的数字 682 就是加的结果。这不是很好玩吗?(图二)我们可以利用这方法以实物教儿童认识一些大数的加法。 六十进位制目前是较少用到,除了在时间上我们说:一小时 = 60 分,1 分 = 60 秒外,在其他场合我们都是用十进位制。 可是你知道吗?就是古代的巴比仑人定下一年有三百六十五天, 十二个月,一个月有二十九天或三十天,每七天为一个星期,一个圆有三百六十度,一小时有六十分,一分有六十秒等等,我们现代还是继续采用。 考古学家在一块长三又八分之一吋,宽二吋,厚四分之三吋的泥板书上发现了巴比仑人的记数法。 这泥板的中间从上到下有像(图四)的符号:读者可以看出这是代表:1,2,3,4,5,6,7,8,9,10,11,12,13。 这泥板书受到盐和灰尘的侵蚀,但可以看到泥板书的右边前五行是形如: 很明显的这应该代表 10,20,30,40,50。 可是接下来的却是这样的符号: 如果我们前面知道的符号是写成: 1 1,10 1,20 (缺三个) 2 2,10 这是什麼意思呢?考古学家猜测那几个符号照上面10,20,30,40,50的次序应该是代表60,70,80,(缺掉的90,100,110),120,130。 是否那个 1 的符号也可以代表 60 呢?如果是的话那麼 1,10就是代表 60 + 10 = 70。而 1,20 是代表 60 + 20 = 80。而那个将代表 2 × 60 = 120了。很明显 2,10是代表 120 + 10 = 130。 这样的猜测是合理的,由於巴比仑人没有符号表示零,而他们采用的是 60 进位制,因此同样一个符号可以代表 1 或 60。 没有零符号在记数上是很容易产生误会,比方说:可以看成 1,20 = 1 × 60 + 20 = 80 或 1,0,20 = 1 × 602 + 0 × 60 + 20 = 3620。 到了两千年前巴比仑人才采用表示零。 因此像代表 2,3,0,41 即 2 × 603 + 3 × 602 + 41 = 442841 从此巴比仑人小於 60 的数字的记数可以看出他们懂得「位值原理」。 巴比仑人怎样进行除法运算? 从一些泥板书里可以看出底下的对应。 2 30 16 3,45 45 1 ,203 20 18 3,20 48 1 ,154 15 20 3 50 1 ,125 12 24 2,30 54 1 , 6 ,406 10 25 2,248 7,30 27 2,13,209 6,40 30 210 6 32 1,52,3012 5 36 1,4015 4 40 1,30 如果你在现在的伊拉克的土地上发掘这样的泥板书,你能了解这是什麼意思吗?四十多年前考古学家发现这事实上就是巴比仑人的「倒数表」。我现在把以上的表改写: 你可以看出这就是把整数 n 的倒数1/n用六十进的分数来表示。比方说 27对应 2,13,20意思就是: 你会注意到以上的表缺少了:7,11,13,14,17,19,21,23,26,28,31,33,34,35等等,这是什麼原因呢? 原来是这样:巴比仑人只列下以六十进位制的分数表示式是有限长的那些整数,而这些整数只能是 2a3b5c(这里a,b,c是大於或等於零的整数)的样子。 对於 7 来说,它的倒数如果是以六十进位数表示将得到循环分数,即 8,34,17,8,34,17,....直到无穷。对於 11 也是如此,我们得到 5,27,16,21,49 然后重覆以上的样式以至无穷。 为什麼要构造这样的「倒数表」呢? 我们在小学学计算:先学加,然后学减。先学乘,然后学除。如果现在要算a ÷ b ,我们可以把这问题转化成为 a × (),这样只要知道 b 的倒数,我们就「化除为乘」,计算有时是会快捷一些。 古代的巴比仑人也懂得这个道理,因此在实际生活上,如在灌溉、计算工资、利息、税项、天文等问题上遇到除的问题,就尽可能将它转变为乘的问题来解决,这时候「倒数表」就很有用了。 Top 祖冲之 法国巴黎的「发现宫」科学博物馆中友祖冲之的大名与他所发现 的圆周率值并列。他曾经算出月球绕地球一周为时27.21223日,与现代 公认的27.21222日,在那个时代能有那麼伟大的成就,实在让人佩服, 难怪西方科学家把月球上许多「火山口」中的一个命名为「祖冲之」。 而即使在社会主义共产国家「老大哥」苏俄,在莫斯科国立大学礼堂 廊壁上,用彩色大理石镶嵌的世界各国著名的科学家肖像中,也有中国 的祖冲之和李时珍,祖氏有那麼杰出的表现,我们不能不对他稍有认识。 Top 阿基米德 阿基米德最有名的名言,就是:「给我一个立足点,我就可以移动地球。」他一生专心研究科学上的体积和浮力问题,有一个有趣的故事,就是当时候国王叫金匠打造一顶纯金的皇冠,国王因为怀疑金匠加了杂物,就请阿基米德鉴定,阿基米德一直在想鉴定的方法,就在他走进浴缸里洗澡的时候,看见满出去的水时,悟出体积的原理,他高兴的跑出浴室,大叫:「我找到了!」一时忘了自己是光著身体呢!另外,阿基米德还有几何方面的数学成就哩! 阿基米得是第一位讲科学的工程师,在他的研究中,使用欧几理得的方法,先假设,再以严谨的逻辑推论得到结果,他不断地寻求一般性的原则而用於特殊的工程上。他的作品始终融合数学和物理,因此阿基米得成为物理学之父。 他应用杠杆原理於战争,保卫西拉斯鸠的事迹是家喻户晓的。而他也以同一原理导出部分球体的体积、回转体的体积(椭球、回转抛物面、回转双曲面),此外,他也讨论阿基米得螺线(例如:苍蝇由等速旋转的唱盘中心向外走去所留下的轨迹),圆,球体、圆柱的相关原理,其成就,在古时无人能望其项背。 阿基米得将欧几理得提出的趋近观念作了有效的运用,他提出圆内接多边形和相似圆外切多边形,当边数足够大时,两多边形的周长便一个由上,一个由下的趋近於圆周长。他先用六边形,以后逐次加倍边数,到了九十六边形,求π的估计值介於3.14163和3.14286之间。另外他算出球的表面积是其内接最大圆面积的四倍。而他最得意的杰作是导出圆柱内切球体的体积是圆柱体积的三分之二倍。这定理就刻在他的墓碑上,也成为他名垂千古的一大注记。 Top 毕达哥拉斯 毕达哥拉斯(Pythagoras)是希腊的哲学家和数学家。出生在希腊撒摩亚(Samoa)地方的贵族家庭,年青时曾到过埃及和巴比仑那里学习数学,游历了当时世界上二个文化水准极高的文明古国。毕达哥拉斯后来就到意大利的南部传授数学及宣传他的哲学思想,后来和他的信徒们组成了一个所谓「毕达哥拉斯学派」的政治和宗教团体。 毕达哥拉斯是比同时代中一些开坛授课的学者进步一点;因为他容许妇女(当然是贵放妇女而不是奴隶女婢)来听课。他认为妇女也是和男人一样在求知的权利上平等,因此他的学派中就有十多名女学者。这是其他学派所无的现象。 传说他是一个非常优秀的教师,他认为每一个都该懂些几何。有一次他看到一个勤勉的穷人,他想教他学习几何,因此对此人建议:如果这人能学懂一个定理,那麼他就给他一块钱币。这个人看在钱份上就和他学几何了,可是过了一个时期,这学生对几何却产生了非常大的兴趣,反而要求毕达哥拉斯教快一些,并且建议:如果老师多教一个定理,他就给一个钱币。不需要多少时间,毕达哥拉斯把他以前给那学生的钱全部收回了。 毕达哥拉斯是死在意大利科多拿城里,在一场城市暴动中,他被人暗杀掉。他的坟墓现仍在意大利的这个古山城中,这坟墓就像中国的馒头式坟。二千多年过去了,这坟还保留下来,可见人们对这学者的重视。 毕氏建立毕达歌拉斯兄弟会,崇拜整数、分数为偶像,他们认为透过对数的了解,可以揭示宇宙神秘,使他们更接近神,事实是一个宗教性社团组织。入会时需宣誓不得将数学发现公诸於世,甚至在毕氏死后,有成员因公开正12面体可由12个正五边形构成的发现而被迫浸水致死。他们集中注意於研究自然数和有理数,特别是完美数,它是本身正因数(除了本身之外)之和,例如:6=1+2+3、28=1+2+4+7+14。他们认为上帝因为6是完美的,因此选择以6天创造万物,且月亮绕行地球一周约28天。 毕氏建立毕达歌拉斯兄弟会后不久,撰造了「哲学家(philosopher)」一词,在一次出席奥林匹亚竞赛时,弗利尤司的里昂王子问他会如何描述自己,他回道:「我是一位哲学家。」他解释说:「有些人因爱好财富而被左右,令一些人因热中於权力和支配而盲从,但是最优秀的人则献身於发现生活本身的意义和目的。他设法揭示自然的奥秘,热爱知识,这种人就是哲学家。」 「在一个直角三角形,斜边的平方是两股平方和。」这个定理中国人(周朝的商高)和巴比伦人早在毕氏提出前一千年就在使用,但一般人仍将定理归属於毕达歌拉斯,是因为他证明了定理的普遍性。毕氏认为寻找证明就是寻找认识,而这种认识比任何训练所累积的经 验都不容置疑,数学逻辑是真理的仲裁者。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语 20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
陈景润。他在一间破旧的小屋里,用掉几麻袋的草稿纸,证明了离哥达巴赫猜想(1+1)最接近的(1+2)。 高斯在上小学时,小学老师对学生很不负责任。这天,老师让大家做从一加到一百的计算题,不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字。老师也算过,答案也是5050。高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了。 华罗庚因病左腿残疾后,走路要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步履,他曾幽默地戏称为“圆与切线的运动”。在逆境中,他顽强地与命运抗争,誓言是:“我要用健全的头脑,代替不健全的双腿!” 华罗庚上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“有一个数,3个3个地数,还余2;5个5个地数,还余3;7个7个地数,还余2,请问这个得数是多少?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。 有一次陈景润去理头发,他是38号,理头发还早着呢!于是他去了图书馆,忘了理发,38号的牌子还在口袋里呢! 高斯在上小学时,小学老师对学生很不负责任。这天,老师让大家做从一加到一百的计算题,不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字。老师也算过,答案也是5050。高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了。 祖冲之祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长. 阿基米德 叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。
高斯 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:1+2+3+ ..... +97+98+99+100 = ?老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:1+2+3+4+ ..... +96+97+98+99+100100+99+98+97+96+ ..... +4+3+2+1=101+101+101+ ..... +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才! 祖冲之 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长. 阿基米德 叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。
1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下子把最小素数从原来的80推进到16。这一研究成果,也是当时世界上最先进的。
16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁 道夫数,他死后别人便把这个数刻到他的墓碑上。 瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上 就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语 20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁. 伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。 阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率". 塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已。
陈景润。他在一间破旧的小屋里,用掉几麻袋的草稿纸,证明了离哥达巴赫猜想(1+1)最接近的(1+2)。 高斯在上小学时,小学老师对学生很不负责任。这天,老师让大家做从一加到一百的计算题,不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字。老师也算过,答案也是5050。高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了。 华罗庚因病左腿残疾后,走路要左腿先画一个大圆圈,右腿再迈上一小步。对于这种奇特而费力的步履,他曾幽默地戏称为“圆与切线的运动”。在逆境中,他顽强地与命运抗争,誓言是:“我要用健全的头脑,代替不健全的双腿!” 华罗庚上中学时,在一次数学课上,老师给同学们出了一道著名的难题:“有一个数,3个3个地数,还余2;5个5个地数,还余3;7个7个地数,还余2,请问这个得数是多少?”大家正在思考时,华罗庚站起来说:“23”他的回答使老师惊喜不已,并得到老师的表扬。 有一次陈景润去理头发,他是38号,理头发还早着呢!于是他去了图书馆,忘了理发,38号的牌子还在口袋里呢! 高斯在上小学时,小学老师对学生很不负责任。这天,老师让大家做从一加到一百的计算题,不一会儿,高斯做完了,老师拿来一看,便对他刮目相看:上面歪歪扭扭地写着5050四个字。老师也算过,答案也是5050。高斯说:“其实很简单,100加1是101,99加2也是101,一共有50对,只要101乘以50就可以了。 祖冲之祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长. 阿基米德 叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。
高斯 高斯的父亲作泥瓦厂的工头,每星期六他总是要发薪水给工人。在高斯三岁夏天时,有一次当他正要发薪水的时候,小高斯站了起来说:「爸爸,你弄错了。」然后他说了另外一个数目。原来三岁的小高斯趴在地板上,一直暗地里跟着他爸爸计算该给谁多少工钱。重算的结果证明小高斯是对的,这把站在那里的大人都吓的目瞪口呆。 高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是:1+2+3+ ..... +97+98+99+100 = ?老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗?高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说:1+2+3+4+ ..... +96+97+98+99+100100+99+98+97+96+ ..... +4+3+2+1=101+101+101+ ..... +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050>从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才! 祖冲之 祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长. 阿基米德 叙拉古的亥厄洛王叫金匠造一顶纯金的皇冠,因怀疑里面掺有银,便请阿基米德鉴定。当他进入浴盆洗澡时,水漫溢到盆外,于是悟得不同质料的物体,虽然重量相同,但因体积不同,排去的水也必不相等。根据这一道理,就可以判断皇冠是否掺假。
1979年,陈景润应美国普林斯顿高级研究所的邀请,去美国作短期的研究访问工作。普林斯顿研究所的条件非常好,陈景润为了充分利用这样好的条件,挤出一切可以节省的时间,拼命工作,连中午饭也不回住处去吃。有时候外出参加会议,旅馆里比较嘈杂,他便躲进卫生间里,继续进行研究工作。正因为他的刻苦努力,在美国短短的五个月里,除了开会、讲学之外,他完成了论文《算术级数中的最小素数》,一下子把最小素数从原来的80推进到16。这一研究成果,也是当时世界上最先进的。
