有趣的数学科普小知识有哪些?
有趣的数学科普小知识如下:一、阿拉伯数字阿拉伯数字是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做“阿拉伯数字”。因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。二、九九歌九九歌就是我们现在使用的乘法口诀。远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从“九九八十一”起到“二二如四”止,共36句。因为是从“九九八十一”开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到“一一如一”。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从“一一如一”起到“九九八十一”止。现在我国使用的乘法口诀有两种,一种是45句的,通常称为“小九九”;还有一种是81句的,通常称为“大九九”。三、莫比乌斯环莫比乌斯环是一种拓扑学结构,它只有一个面和一个边界。可以用一根纸条扭转成180度后,两头再粘接起来,就形成了莫比乌斯环。莫比乌斯环沿着中线剪开,第一次,可以得到一个更大的环;第二次及以后,每次都会得到两个互相嵌套的环。中间永远不会断开,这也是莫比乌斯环的神奇之处。四、克莱因瓶在1882年,著名数学家菲利克斯·克莱因发现了后来以他的名字命名的著名“瓶子”:克莱因瓶。克莱因瓶就像是一个瓶子,但是它没有瓶底,它的瓶颈被拉长,然后似乎是穿过了瓶壁,最后瓶颈和瓶底圈连在了一起。有趣的是,如果把克莱因瓶沿着它的对称线切下去,竟会得到两个莫比乌斯环。五、黄金分割黄金分割提出者是毕达哥拉斯。有一次,毕达哥拉斯路过铁匠作坊,被叮叮当当的打铁声迷住了。为了揭开这些声音的秘密,他测量了铁锤和铁砧的尺寸,发现它们存在着十分和谐的比例关系。回家后,他取出一根线,分为两段,反复比较,最后认定1:0.618的比例最为优美。这个比例被公认为是最能引起美感的比例,因此被称为黄金分割。

初中数学知识趣味记忆口诀
数学虽然是理科,但是要记忆的知识点是比较多,这也需要好的记忆方法或记忆口诀。下面是由我给大家带来关于初中数学知识趣味记忆口诀,希望对大家有帮助! 初中数学知识记忆口诀一、数与代数 Ⅰ、数与式 1.有理数的加法、乘法运算 同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。 同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。 2.合并同类项 合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。 3.去、添括号法则 去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号; 括号前面是负号,去、添括号都变号。 4.单项式运算 加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。 5.分式混合运算法则 分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难; 变号必须两处,结果要求最简。 6.平方差公式 两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。 7.完全平方公式 首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。 8.因式分解 一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根, 换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。 【注】一提(提公因式)二套(套公式) 9.二次三项式的因式分解 先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。 10.比和比例 两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积; 前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比; 两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比; 商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。 11.根式和无理式 表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制; 无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。 12.最简根式的条件 最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。 Ⅱ、方程与不等式 1.解一元一次方程 已知未知闹分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。 先去分母再括号,移项合并同类项;系数化1还没好,回代值等才算了。 2.解一元一次不等式 去分母、去括号,移项时候要变号;同类项、合并好,再把系数来除掉; 两边除(以)负数时,不等号改向别忘了。 3.解一元一次绝对值不等式 大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。 4.解一元一次不等式组 大大取较大,小小取较小;大小、小大取中间,大大,小小无处找。 5.解分式方程 同乘最简公分母,化成整式写清楚;求得解后须验根,原(根)留、增(根)舍别含糊。 6.解一元二次方程 方程没有一次项,直接开方最理想;如果缺少常数项,因式分解没商量; b、c相等都为零,等根是零不要忘;b、c同时不为零,因式分解或配方; 也可直接套公式,因题而异择良方。 7.解一元二次不等式 首先化成一般式,构造函数第二站;判别式值若非负,曲线横轴有交点; a正开口它向上,大于零则取两边;代数式若小于零,解集交点数之间; 方程若无实数根,口上大零解为全;小于零将没有解,开口向下正相反。 Ⅲ、函数 1.坐标系上坐标点 坐标平面点(x,y),横在前来纵在后;X轴上y为0,x为0在Y轴。 象限角的平分线,坐标特征有特点;一、三横纵都相等,二、四横纵恰相反。 平行某轴的直线,点的坐标有讲究;平行于X轴,纵等横不同;平行于Y轴,横等纵不同。 对称点坐标要记牢,相反位置莫混淆;X轴对称y相反,Y轴对称X反;原点对称最好记,横纵坐标变符号。 2.函数自变量的取值 分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。 3.判断正比例函数: 判断正比例函数,检验当分两步走;一量表示另一量,是与否;若有还要看取值,全体实数都要有。 4.正比例函数()图像与性质 正比函数很简单,经过原点一直线;K正一三负二四,变化趋势记心间; K正左低右边高,同大同小向爬山;K负左高右边低,一大另小下山峦。 5.反比例函数()图像与性质 反比函数双曲线,所有都不过原点;K正一三负二四,两轴是它渐近线; K正左高右边低,一三象限滑下山;K负左低右边高,二四象限如爬山。 6.一次函数()图像与性质 一次函数是直线,图像经过仨象限;两个系数k与b,作用之大莫小看; k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反; k是斜率定夹角,b与Y轴来相见;k的绝对值越大,线离横轴就越远。 7.一次函数()图像与性质 二次方程零换y,二次函数便出现;全体实数定义域,图像叫做抛物线; 抛物线有对称轴,两边单调正相反;开口、顶点和交点,它们确定图象现; 开口、大小由a断,c与Y轴来相见;b的符号较特别,符号与a相关联; 顶点非高即最低。上低下高很显眼,如果要画抛物线,平移也可去描点; 提取配方定顶点,两条途径再挑选,若要平移也不难,先画基础抛物线, 列表描点后连线,平移规律记心间,左加右减括号内,号外上加下要减。 8.三角函数 三角函数的增减性:正增余减。 特殊三角函数值(30度、45度、60度)记忆:正弦(值)、余弦(值)分母2、正切(值)、余切(值)分母3。 二、空间与图形 Ⅰ、线与角 1.直线、射线与线段 直线射线与线段,形状相似有关联;直线长短不确定,可向两方无限延; 射线仅有一端点,反向延长成直线;线段定长两端点,双向延伸变直线。 两点定线是共性,组成图形最常见。 2.角 一点出发两射线,组成图形叫做角;共线反向是平角,平角之半叫直角; 平角两倍成周角,小于直角叫锐角;直平之间是钝角,平周之间叫优角; 和为直角叫互余,和为平角叫互补。 3.两点间距离公式 同轴两点求距离,大减小数就为之;与轴等距两个点,间距求法亦如此; 平面任意两个点,横纵标差先求值;差方相加开平方,距离公式要牢记。 Ⅱ、平面图形 1.平行四边形的判定 要证平行四边形,两个条件才能行;一证对边都相等,或证对边都平行; 一组对边也可以,必须相等且平行; 对角线,是个宝,互相平分“跑不了”;对角相等也有用,“两组对角”才能成。 2.矩形的判定 任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。 已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。 3.菱形的判定 任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形; 已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。 4.梯形的辅助线 移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现; 延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前; 已知腰上一中线,莫忘作出中位线。 5.三角形的辅助线 题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连; 三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。 6.圆内的正多边形 份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前. 7.圆中比例线段 遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替; 遇等比,改等积,引用射影和圆幂;平行线,转比例,两端各自找联系。初中数学几何面积8个速背口诀求几何图形的面积有“三板斧” (1)直接用三角形,特殊四边形,圆,扇形的面积公式来求。 (2)间接割补法,把不规则图形面积通过割补、运动、变形转化为规则易求图形面积的和或差。 (3)特殊求法,即利用相似图形的面积比等于相似比的平方,等底(等高)的三角形面积比等于高(底)比的性质来解。 其次有些乘法公式、勾股定理、三角形的一边平行四边形的比例式等性质,也可用面积法来推导。 面积法是什么? 运用面积关系解决平面几何体的方法,称为面积法。 它是几何中常用的一种方法。特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系会变成数量之间的关系。这个时候,问题就化繁为简了,只需要计算,有事甚至可以不添置补助线就迎刃而解了! 此外,用面积法还可以用来求线段长,证明线段相等(不等),角相等,比例式或等积式,求线段比等。虽然这些几乎都可以用其他方法来解决,但是面积法无疑是一种更直接、简易、有效的方法。 面积法的常用理论口诀 1.三角形的中线把三角形分成两个面积相等的部分。 2.同底同高或等底等高的两个三角形面积相等。 3.平行四边形的对角线把其分成两个面积相等的部分。 4.同底(等底)的两个三角形面积的比等于高的比。 同高(或等高)的两个三角形面积的比等于底的比。 5.三角形的面积等于等底等高的平行四边形的面积的一半。 6.三角形的中位线截三角形所得的三角形的面积等于原三角形面积的1/4 7.三角形三边中点的连线所成的三角形的面积等于原三角形面积的1/4 8.有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。 面积法的常用解题思路 1.分解法:通常把一个复杂的图形,分解成几个三角形。 2.作平行线法:通过平行线找出同高(或等高)的三角形。 3.利用有关性质法:比如利用中点、中位线等的性质。 4.还可以利用面积解决其它问题。 猜你喜欢: 1. 趣味智力题|数学智力题 2. 2016初中数学知识点总结大全 3. 数学知识要如何记 4. 数学知识的快速记忆方法 5. 初中语文记忆法口诀 6. 人教版初中数学知识点汇总中考复习资料

趣味数学小知识
讲述趣味数学的小知识可以提高小学生的学习热情,关于数学的一些趣味小知识有哪些?下面是我为你整理的趣味数学小知识,一起来看看吧。 趣味数学小知识:“+”、“-”, “×”,“÷” 的由来减号“+”、“-”— 五百年前德国人最先使用的。据说,当时酒商在售出酒后,曾用横线标出酒桶里的存酒,而当桶里的酒又 增加时,便用竖线条把原来画的横线划掉。于是就出现用以表示减少的“-”和用来表示增加的“+”。1489年,德国数学家魏德曼在他的著作中首先使用“+”、“-”这两个符号表示剩余和不足,后来又经过法国数学家韦达的宣传和提倡,开始普及,直到1630年,才得到大家的公认。 乘号“×”— 三百多年前英国著名数学家欧德莱最先使用的,他认为乘法是加法的一种特殊形式,于是他便把前人所发明的“×” 转动45°角,这样乘号“×”也就面世了。“×”既表示了乘法与加法的关系,又表示了相乘的方法。 除号“÷”— 最初这个符号是作为减号在欧洲大陆流行,最早人们用“:”表示除或比,也有人用分数线“-”表示比,后来有 人把二者结合起来就变成了“÷”,瑞士的数学家拉哈的著作中正式把“÷”作为除号。趣味数学小知识:奇妙的数字1212这个数字跟人类有缘,与我们的生活有密切的联系。如: 一年12个月 一昼夜12个时辰 时针在钟面上走一圈是12小时 在我国和亚洲一些国家有着12生肖的说法 我国传统用做表示次序的符号有12个,即:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥 小肠第一部分叫十二指肠,它的长度相当于本人12个手指的指幅 人体的胸部有12块胸椎,分别与12对肋骨相接 打排球时场上有12个球员 足球比赛罚点球的英制长度是12码趣味数学小知识:0是我国最早创造的 我们知道阿拉伯数字1、2、3、4、5、6、7、8、9原是印度人发明的,13世纪后期传入中国,人们误认为0也是印度人发明的。其实印度起先发明时没有“0”,他们把“204”,写成“2 4”,中间空着,把2004,写成“2 4”,怎么区别中间有几个零呢?为了避免看不清,就用点“· ”来表示,204写成“2·4”,那不和小数混淆了?直到公元876年才把“0”确定下来。

搞笑数学趣味十足的小故事
上数学课时,教师可以融入一些有趣的数学小故事。从数学趣味小故事中,小朋友们不仅可以学习到知识,还可以在愉快的氛围中体验学习乐趣、积极开动脑筋。下面就是我给大家整理的数学趣味小故事,希望大家喜欢。 数学趣味小故事篇1:数学天才高斯高斯念小学的时候,有一次在老师教完加法后,因为老师想要休息,所以便出了一道题目要同学们算算看,题目是: 1+2+3+ ..... +97+98+99+100 = ? 老师心里正想,这下子小朋友一定要算到下课了吧!正要借口出去时,却被 高斯叫住了!! 原来呀,高斯已经算出来了,小朋友你可知道他是如何算的吗? 高斯告诉大家他是如何算出的:把 1加 至 100 与 100 加至 1 排成两排相加,也就是说: 1+2+3+4+ ..... +96+97+98+99+100 100+99+98+97+96+ ..... +4+3+2+1 =101+101+101+ ..... +101+101+101+101 共有一百个101相加,但算式重复了两次,所以把10100 除以 2便得到答案等于 <5050> 从此以后高斯小学的学习过程早已经超越了其它的同学,也因此奠定了他以后的数学基础,更让他成为——数学天才!数学趣味小故事篇2:一元钱哪里去了三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了? 分苹果 小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。 小咪的爸爸是怎样做的呢?数学趣味小故事篇3:阿拉伯数字的来源阿拉伯数字1、2、3、4、5、6、7、8、9、0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。阿拉伯数字最初出自印度人之手,也是他们的祖先在生产实践中逐步创造出来的。 公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。

数学趣味小知识
抽屉原理的应用 1947年,匈牙利数学家把这一原理引进到中学生数学竞赛中,当年匈牙利全国数学竞赛有一道这样的试题:“证明在任何六个人中,一定可以找到三个互相认识的人,或者三个互不认识的人。” 这个问题乍看起来,似乎令人匪夷所思。但如果你懂得抽屉原理,要证明这个问题是十分简单的。我们用A、B、C、D、E、F代表六个人,从中随便找一个,例如A吧,把其余五个人放到“与A认识”和“与A不认识”两个“抽屉”里去,根据抽屉原理,至少有一个抽屉里有三个人。不妨假定在“与A认识”的抽屉里有三个人,他们是B、C、D。如果B、C、D三人互不认识,那么我们就找到了三个互不认识的人;如果B、C、D三人中有两个互相认识,例如B与C认识,那么,A、B、C就是三个互相认识的人。不管哪种情况,本题的结论都是成立的。 由于这个试题的形式新颖,解法巧妙,很快就在全世界广泛流传,使不少人知道了这一原理。其实,抽屉原理不仅在数学中有用,在现实生活中也到处在起作用,如招生录取、就业安排、资源分配、职称评定等等,都不难看到抽屉原理的作用。 兔同笼你以前听说过“鸡兔同笼”问题吗?这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗? 解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。 这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。 普乔柯趣题普乔柯是原苏联著名的数学家。1951年写成《小学数学教学法》一书。这本书中有下面一道有趣的题。 商店里三天共卖出1026米布。第二天卖出的是第一天的2倍;第三天卖出的是第二天的3倍。求三天各卖出多少米布? 这道题可以这样想:把第一天卖出布的米数看作1份。就可以画出下面的线段图: 第一天为1份;第二天为第一天的2倍;第三天为第二天的3倍,也就是第一天的2×3倍。 列综合算式可求出第一天卖布的米数: 1026÷(l+2+6)=1026÷9=114(米) 而114×2=228(米) 228×3=684(米) 所以三天卖的布分别是:114米、228米、684米。 请你接这种方法做一道题。 有四人捐款救灾。乙捐款为甲的2倍,丙捐款为乙的3倍,丁捐款为丙的4倍。他们共捐款132元。求四人各捐款多少元? 鬼谷算我国汉代有位大将,名叫韩信。他每次集合部队,只要求部下先后按l~3、1~5、1~7报数,然后再报告一下各队每次报数的余数,他就知道到了多少人。他的这种巧妙算法,人们称为鬼谷算,也叫隔墙算,或称为韩信点兵,外国人还称它为“中国剩余定理”。到了明代,数学家程大位用诗歌概括了这一算法,他写道: 三人同行七十稀,五树梅花廿一枝, 七子团圆月正半,除百零五便得知。 这首诗的意思是:用3除所得的余数乘上70,加上用5除所得余数乘以21,再加上用7除所得的余数乘上15,结果大于105就减去105的倍数,这样就知道所求的数了。 比如,一篮鸡蛋,三个三个地数余1,五个五个地数余2,七个七个地数余3,篮子里有鸡蛋一定是52个。算式是: 1×70+2×21+3×15=157 157-105=52(个) 请你根据这一算法计算下面的题目。 新华小学订了若干张《中国少年报》,如果三张三张地数,余数为1张;五张五张地数,余数为2张;七张七张地数,余数为2张。新华小学订了多少张《中国少年报》呢? 是要这些么?
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
1-10中任何一个的数加上9,把结果各个位上的数相加,都能得到这个数 例如3+9=12 ,1+2=39+9=18,1+8=9 1+9=10,1+0=1
sdasdasdasdasdadsdadfewrfweewrwfscec e ew w ew frweeerfdxescxqedeg ewgty43retre
555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555?是这些么?
◆“0” 罗马数字没有0;五世纪时,“0”从东方传到罗马,当时教皇非常保守,认为罗马数字可以用来记任何数目,已足够用,就禁止用“0”,一位罗马学者的手册介绍了0和0的一些用法,教皇发现后,对它施以酷刑。◆以“规”、“矩”度天下之方圆山东省嘉祥县一座古建筑石室造像中,有两位古代神化中我们远古祖先的形象,一位是伏羲,一位是女娲。伏羲手中物体就是规,与圆规相似;女娲手中物体叫矩,呈直角拐尺形。 有两个供你选择~
1-10中任何一个的数加上9,把结果各个位上的数相加,都能得到这个数 例如3+9=12 ,1+2=39+9=18,1+8=9 1+9=10,1+0=1
sdasdasdasdasdadsdadfewrfweewrwfscec e ew w ew frweeerfdxescxqedeg ewgty43retre
555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555?是这些么?
