100道奥数题及答案都要应用题 简单一点
小学五年级奥数题--行程问题 1、客货两车同时从甲乙两站相对开出,客车每小时行54千米,货车每小时行48千米,两车相遇后又以原来的速度前进,到达对方站后立即返回,两车再次相遇时客车比货车多行了21.6千米。甲乙两站相距多少千米?答案:122.4千米。 2、甲乙两地相距48千米,其中一部分是上坡路,其余是下坡路。某人骑自行车从甲地到达乙地后沿原路返回,去时用了4小时12分,返回用了3小时48分。已知自行车上坡是每小时行10千米,求自行车下坡每小时行多少千米?答案:下坡每小时行15千米。 3、南北两镇之间全是山路,某人上山每小时走2千米,下山时每小时走5千米,从南镇到北镇要走38小时,从北镇到南镇要走32小时,两镇之间的路程是多少千米?从南镇到北镇的上山路和下山路各是多少千米?答案:下山路为40千米,上山路为60千米 。 4、甲每小时行12千米,乙每小时行8千米.某日甲从东村到西村,乙同时从西村到东村,以知乙到东村时,甲已先到西村5小时.求东西两村的距离甲乙的路程是一样的,时间甲少5小时,设甲用t小时可以得到1. 12t=8(t+5)t=10所以距离=120千米 5、小明和小芳围绕着一个池塘跑步,两人从同一点出发,同向而行。小明:280米/分;小芳:220/分。8分后,小明追上小芳。这个池塘的一周有多少米?280*8-220*8=480这时候如果小明是第一次追上的话就是这样多这时候小明多跑一圈... 6、某人从甲地到乙地,先骑12小时摩托车,再骑9小时自行车正好到达.返回时,先骑21小时自行车,再骑8小时摩托车也正好到达.从甲地到乙地如果全骑摩托车需要多少时间?摩托车的速度是xkm/h,自行车速是ykm/h 。21y+8x=12x+9y4x=12yx=3y所以摩托车共需12+9/3=15小时 7、有两列火车,一列长102米,每秒行20米;一列长120米,每秒行17米.两车同向而行,从第一列车追及第二列车到两车离开需要几秒?设从第一列车追及第二列车到两列车离开需要x秒,列方程得:102+120+17 x =20 xx =74. 8、某人步行的速度为每秒2米.一列火车从后面开来,超过他用了10秒.已知火车长90米.求火车的速度.设列车的速度是每秒x米,列方程得10 x =90+2×10x =11 9、现有两列火车同时同方向齐头行进,行12秒后快车超过慢车.快车每秒行18米,慢车每秒行10米.如果这两列火车车尾相齐同时同方向行进,则9秒后快车超过慢车,求两列火车的车身长.快车长:18×12-10×12=96(米)慢车长:18×9-10×9=72(米) 10、一列火车通过440米的桥需要40秒,以同样的速度穿过310米的隧道需要30秒.这列火车的速度和车身长各是多少?(1)火车的速度是:(440-310)÷(40-30)=13(米/秒)(2)车身长是:13×30-310=80(米) 11、小英和小敏为了测量飞驶而过的火车速度和车身长,他们拿了两块跑表.小英用一块表记下了火车从她面前通过所花的时间是15秒;小敏用另一块表记下了从车头过第一根电线杆到车尾过第二根电线杆所花的时间是20秒.已知两电线杆之间的距离是100米.你能帮助小英和小敏算出火车的全长和时速吗?(1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)(2)车身长是:20×15=300(米) 12、一列火车通过530米的桥需要40秒,以同样的速度穿过380米的山洞需要30秒.求这列火车的速度与车身长各是多少米?设火车车身长x米.根据题意,得(530+X )÷40=(380+X )÷30X=70(530+X )÷40=600÷40=15(米/秒) 13、两列火车,一列长120米,每秒行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾离开需要几秒钟?从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+160)÷(15+20)=8(秒). 14、某人步行的速度为每秒钟2米.一列火车从后面开来,越过他用了10秒钟.已知火车的长为90米,求列车的速度.列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.90÷10+2=9+2=11(米) 15、快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当快车车尾接慢车车尾时,求快车穿过慢车的时间?1034÷(20-18)=91(秒) 16、快车长182米,每秒行20米,慢车长1034米,每秒行18米.两车同向并行,当两车车头齐时,快车几秒可越过慢车?182÷(20-18)=91(秒) 17、一人以每分钟120米的速度沿铁路边跑步.一列长288米的火车从对面开来,从他身边通过用了8秒钟,求列车的速度.288÷8-120÷60=36-2=34(米/秒) 18、一列火车长600米,它以每秒10米的速度穿过长200米的隧道,从车头进入隧道到车尾离开隧道共需多少时间?(600+200)÷10=80(秒) 19、小明上午8时骑自行车以每小时12千米的速度从A地到B地,小强上午8时40分骑自行车以每小时16千米的速度从B地到A地,两人在A、B两地的中点处相遇,A、B两地间的路程是多少千米?两人在两地间的路程的中点相遇,但小明比小强多行了40分钟,如果两人同时出发,相遇时,小明行的路程就比小强少12÷60×40=8(千米),就是当小强出发时,小明已经行了8千米,从8时40分起两人到两人相遇,由于小明每小时比小强少行16-12=4(千米),说明两人相遇时间是8÷4=2(小时),那么,A、B两地间的路程是8+(12+16)×2=64(千米)。 20、甲、乙两村相距3550米,小伟从甲村步行往乙村,出发5分钟后,小强骑自行车从乙村前往甲村,经过10分钟遇见小伟。小强骑车每分钟行的比小伟步行每分钟多160米,小伟每分钟走多少米?如果小强每分钟少行160米,他行的速度就和小伟步行的速度相同,这样小强10分钟就少行了160×10=1600(米),小伟(5+10)分钟和小强10分钟一共行走的路程是3550-1600=1950(米),那么小伟每分钟走的路是1950÷(5+10+10)=78(米)。 21、客车从东城和货车从西城同时开出,相向而行,客车每小时行44千米,货车每小时行36千米,客车到西城比货车到东城早2小时。两车开出后多少小时在途中相遇?当客车到西城时,货车离东城还有2×36=72(千米),而货车每小时行的比客车少44-36=8(千米),客车行东西城间的路程用的时间是72÷8=9(小时),因此东西城相距44×9=396(千米),两车从出发到相遇用的时间是;396÷(44+36)=4.95(小时) 22、甲、乙二人同一天从北京出发沿同一条路骑车往广州,甲每天行100千米,乙第一天行70千米,以后每天都比前一天多行3千米,直到追上甲,乙出发后第几天追上甲?开始时,乙一天行的比甲少100-70=30(千米),以后乙每天多行3千米,到与甲速相同要经过30÷3=10(天),即前10天,甲、乙之间的距离是逐天拉大的,第11天两人速度相同,从第12天起,乙的速度开始比甲快,与甲的距离逐天拉近,所以,乙追上甲用的时间是:10×2+1=21(天)。 23、甲、乙两地相距10千米,快、慢两车都从甲地开往乙地,快车开出时,慢车已行了1.5千米,当快车到达乙地时,慢车距乙地还有1千米,那么快车在距乙地多少千米处追上慢车?慢车行了1.5千米,快车才开出,而快车到达乙地时,慢车距乙地还有1千米,就是在快车行10千米的时间里,比慢车多行的路程为1.5+1=2.5(千米)。快车每行1千米比慢车多2.5÷10=0.25(千米)。 24、甲、乙两班进行越野行军比赛,甲班以4.5千米/时的速度走了路程的一半,又以5.5千米/时的速度走完了另一半;乙班在比赛过程中,一半时间以4.5千米/时的速度行进,另一半时间以5.5千米/时的速度行进。问:甲、乙两班谁将获胜?快速行走的路程越长,所用时间越短。甲班快、慢速行走的路程相同,乙班快速行走的路程比慢速行走的路程长,所以乙班获胜。 25、轮船从A城到B城需行3天,而从B城到A城需行4天。从A城放一个无动力的木筏,它漂到B城需多少天?轮船顺流用3天,逆流用4天,说明轮船在静水中行4-3=1(天),等于水流3+4=7(天),即船速是流速的7倍。所以轮船顺流行3天的路程等于水流3+3×7=24(天)的路程,即木筏从A城漂到B城需24天。 26、小红和小强同时从家里出发相向而行。小红每分走52米,小强每分走70米,二人在途中的A处相遇。若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇。小红和小强两人的家相距多少米?因为小红的速度不变,相遇地点不变,所以小红两次从出发到相遇的时间相同。也就是说,小强第二次比第一次少走4分。由(70×4)÷(90-70)=14(分)可知,小强第二次走了14分,推知第一次走了18分,两人的家相距(52+70)×18=2196(米)。 27、小明和小军分别从甲、乙两地同时出发,相向而行。若两人按原定速度前进,则4时相遇;若两人各自都比原定速度多1千米/时,则3时相遇。甲、乙两地相距多少千米?每时多走1千米,两人3时共多走6千米,这6千米相当于两人按原定速度1时走的距离。所以甲、乙两地相距6×4=24(千米) 28、甲、乙两人沿400米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。相遇后甲比原来速度增加2米/秒,乙比原来速度减少2米/秒,结果都用24秒同时回到原地。求甲原来的速度。因为相遇前后甲、乙两人的速度和不变,相遇后两人合跑一圈用24秒,所以相遇前两人合跑一圈也用24秒,即24秒时两人相遇。设甲原来每秒跑x米,则相遇后每秒跑(x+2)米。因为甲在相遇前后各跑了24秒,共跑400米,所以有24x+24(x+2)=400,解得x=7又1/3米。 29、 甲、乙两车分别沿公路从A,B两站同时相向而行,已知甲车的速度是乙车的1.5倍,甲、乙两车到达途中C站的时刻分别为5:00和16:00,两车相遇是什么时刻?甲车到达C站时,乙车还需16-5=11(时)才能到达C站。乙车行11时的路程,两车相遇需11÷(1+1.5)=4.4(时)=4时24分,所以相遇时刻是9∶24。 30、 一列快车和一列慢车相向而行,快车的车长是280米,慢车的车长是385米。坐在快车上的人看见慢车驶过的时间是11秒,那么坐在慢车上的人看见快车驶过的时间是多少秒?快车上的人看见慢车的速度与慢车上的人看见快车的速度相同,所以两车的车长比等于两车经过对方的时间比,故所求时间为11 31、甲、乙二人练习跑步,若甲让乙先跑10米,则甲跑5秒可追上乙;若乙比甲先跑2秒,则甲跑4秒能追上乙。问:两人每秒各跑多少米?甲乙速度差为10/5=2速度比为(4+2):4=6:4所以甲每秒跑6米,乙每秒跑4米。 32、一只野兔逃出80步后猎狗才追它,野兔跑 8步的路程猎狗只需跑3步,猎狗跑4步的时间兔子能跑9步。猎狗至少要跑多少步才能追上野兔?狗跑12步的路程等于兔跑32步的路程,狗跑12步的时间等于兔跑27步的时间。所以兔每跑27步,狗追上5步(兔步),狗要追上80步(兔步)需跑[27×(80÷5)+80]÷8×3=192(步)。 33、甲、乙两人在铁路旁边以同样的速度沿铁路方向相向而行,恰好有一列火车开来,整个火车经过甲身边用了18秒,2分后又用15秒从乙身边开过。问:(1)火车速度是甲的速度的几倍?(2)火车经过乙身边后,甲、乙二人还需要多少时间才能相遇?(1)设火车速度为a米/秒,行人速度为b米/秒,则由火车的 是行人速度的11倍;(2)从车尾经过甲到车尾经过乙,火车走了135秒,此段路程一人走需1350×11=1485(秒),因为甲已经走了135秒,所以剩下的路程两人走还需(1485-135)÷2=675(秒)。 34、长江沿岸有A,B两码头,已知客船从A到B每天航行500千米,从B到A每天航行400千米。如果客船在A,B两码头间往返航行5次共用18天,那么两码头间的距离是多少千米?800千米 35、客车长190米,货车长240米,两车分别以每秒20米和每秒23M的速度前进.在双轨铁路上,相遇时从车头相遇到车尾相离需几秒?10秒. ———————————————答 案—————————————————————— 一、填空题120米102米17x米20x米尾尾头头1. 这题是“两列车”的追及问题.在这里,“追及”就是第一列车的车头追及第二列车的车尾,“离开”就是第一列车的车尾离开第二列车的车头.画线段图如下: 设从第一列车追及第二列车到两列车离开需要x秒,列方程得:102+120+17 x =20 xx =74. 2. 画段图如下:头90米尾10x 设列车的速度是每秒x米,列方程得10 x =90+2×10x =11. 头尾快车头尾慢车头尾快车头尾慢车3. (1)车头相齐,同时同方向行进,画线段图如下: 则快车长:18×12-10×12=96(米)(2)车尾相齐,同时同方向行进,画线段图如下:头尾快车头尾慢车头尾快车头尾慢车 则慢车长:18×9-10×9=72(米) 4. (1)火车的速度是:(440-310)÷(40-30)=13(米/秒)(2)车身长是:13×30-310=80(米) 5. (1)火车的时速是:100÷(20-15)×60×60=72000(米/小时)(2)车身长是:20×15=300(米)6. 设火车车身长x米,车身长y米.根据题意,得①② 解得 7. 设火车车身长x米,甲、乙两人每秒各走y米,火车每秒行z米.根据题意,列方程组,得①② ①-②,得: 火车离开乙后两人相遇时间为:(秒) (分). 8. 解:从车头相遇到车尾离开,两车所行距离之和恰为两列车长之和,故用相遇问题得所求时间为:(120+60)¸(15+20)=8(秒). 9. 这样想:列车越过人时,它们的路程差就是列车长.将路程差(90米)除以越过所用时间(10秒)就得到列车与人的速度差.这速度差加上人的步行速度就是列车的速度.90÷10+2=9+2=11(米)答:列车的速度是每秒种11米. 10. 要求过几分钟甲、乙二人相遇,就必须求出甲、乙二人这时的距离与他们速度的关系,而与此相关联的是火车的运动,只有通过火车的运动才能求出甲、乙二人的距离.火车的运行时间是已知的,因此必须求出其速度,至少应求出它和甲、乙二人的速度的比例关系.由于本问题较难,故分步详解如下:①求出火车速度 与甲、乙二人速度 的关系,设火车车长为l,则:(i)火车开过甲身边用8秒钟,这个过程为追及问题:故 ; (1)(i i)火车开过乙身边用7秒钟,这个过程为相遇问题:故 . (2)由(1)、(2)可得: ,所以, .②火车头遇到甲处与火车遇到乙处之间的距离是:.③求火车头遇到乙时甲、乙二人之间的距离.火车头遇甲后,又经过(8+5×60)秒后,火车头才遇乙,所以,火车头遇到乙时,甲、乙二人之间的距离为:④求甲、乙二人过几分钟相遇?(秒) (分钟)答:再过 分钟甲乙二人相遇. 二、解答题11. 1034÷(20-18)=91(秒) 12. 182÷(20-18)=91(秒) 13. 288÷8-120÷60=36-2=34(米/秒)答:列车的速度是每秒34米. 14. (600+200)÷10=80(秒)答:从车头进入隧道到车尾离开隧道共需80秒. 平均数问题 1. 蔡琛在期末考试中,政治、语文、数学、英语、生物五科的平均分是 89分.政治、数学两科的平均分是91.5分.语文、英语两科的平均分是84分.政治、英语两科的平均分是86分,而且英语比语文多10分.问蔡琛这次考试的各科成绩应是多少分? 2. 甲乙两块棉田,平均亩产籽棉185斤.甲棉田有5亩,平均亩产籽棉203斤;乙棉田平均亩产籽棉170斤,乙棉田有多少亩? 3. 已知八个连续奇数的和是144,求这八个连续奇数。 4. 甲种糖每千克8.8元,乙种糖每千克7.2元,用甲种糖5千克和多少乙种糖混合,才能使每千克糖的价钱为8.2元? 5. 食堂买来5只羊,每次取出两只合称一次重量,得到十种不同的重量(千克):47、50、51、52、53、54、55、57、58、59.问这五只羊各重多少千克? 等差数列 1、下面是按规律排列的一串数,问其中的第1995项是多少? 解答:2、5、8、11、14、……。 从规律看出:这是一个等差数列,且首项是2,公差是3, 这样第1995项=2+3×(1995-1)=5984 2、在从1开始的自然数中,第100个不能被3除尽的数是多少? 解答:我们发现:1、2、3、4、5、6、7、……中,从1开始每三个数一组,每组前2个不能被3除尽,2个一组,100个就有100÷2=50组,每组3个数,共有50×3=150,那么第100个不能被3除尽的数就是150-1=149. 3、把1988表示成28个连续偶数的和,那么其中最大的那个偶数是多少? 解答:28个偶数成14组,对称的2个数是一组,即最小数和最大数是一组,每组和为: 1988÷14=142,最小数与最大数相差28-1=27个公差,即相差2×27=54, 这样转化为和差问题,最大数为(142+54)÷2=98。 4、在大于1000的整数中,找出所有被34除后商与余数相等的数,那么这些数的和是多少? 解答:因为34×28+28=35×28=980<1000,所以只有以下几个数:34×29+29=35×2934×30+30=35×3034×31+31=35×3134×32+32=35×3234×33+33=35×33以上数的和为35×(29+30+31+32+33)=5425 5、盒子里装着分别写有1、2、3、……134、135的红色卡片各一张,从盒中任意摸出若干张卡片,并算出这若干张卡片上各数的和除以17的余数,再把这个余数写在另一张黄色的卡片上放回盒内,经过若干次这样的操作后,盒内还剩下两张红色卡片和一张黄色卡片,已知这两张红色的卡片上写的数分别是19和97,求那张黄色卡片上所写的数。 解答:因为每次若干个数,进行了若干次,所以比较难把握,不妨从整体考虑,之前先退到简单的情况分析: 假设有2个数20和30,它们的和除以17得到黄卡片数为16,如果分开算分别为3和13,再把3和13求和除以17仍得黄卡片数16,也就是说不管几个数相加,总和除以17的余数不变,回到题目1+2+3+……+134+135=136×135÷2=9180,9180÷17=540, 135个数的和除以17的余数为0,而19+97=116,116÷17=6……14, 所以黄卡片的数是17-14=3。 6、下面的各算式是按规律排列的:1+1,2+3,3+5,4+7,1+9,2+11,3+13,4+15,1+17,……, 那么其中第多少个算式的结果是1992? 解答:先找出规律: 每个式子由2个数相加,第一个数是1、2、3、4的循环,第二个数是从1开始的连续奇数。 因为1992是偶数,2个加数中第二个一定是奇数,所以第一个必为奇数,所以是1或3, 如果是1:那么第二个数为1992-1=1991,1991是第(1991+1)÷2=996项,而数字1始终是奇数项,两者不符, 所以这个算式是3+1989=1992,是(1989+1)÷2=995个算式。 7、如图,数表中的上、下两行都是等差数列,那么同一列中两个数的差(大数减小数)最小是多少? 解答:从左向右算它们的差分别为:999、992、985、……、12、5。 从右向左算它们的差分别为:1332、1325、1318、……、9、2, 所以最小差为2。 8、有19个算式: 那么第19个等式左、右两边的结果是多少? 解答:因为左、右两边是相等,不妨只考虑左边的情况,解决2个问题: 前18个式子用去了多少个数? 各式用数分别为5、7、9、……、第18个用了5+2×17=39个, 5+7+9+……+39=396,所以第19个式子从397开始计算; 第19个式子有几个数相加? 各式左边用数分别为3、4、5、……、第19个应该是3+1×18=21个, 所以第19个式子结果是397+398+399+……+417=8547。 9、已知两列数: 2、5、8、11、……、2+(200-1)×3; 5、9、13、17、……、5+(200-1)×4。它们都是200项,问这两列数中相同的项数共有多少对? 解答:易知第一个这样的数为5,注意在第一个数列中,公差为3,第二个数列中公差为4,也就是说,第二对数减5即是3的倍数又是4的倍数,这样所求转换为求以5为首项,公差为12的等差数的项数,5、17、29、……, 由于第一个数列最大为2+(200-1)×3=599; 第二数列最大为5+(200-1)×4=801。新数列最大不能超过599,又因为5+12×49=593,5+12×50=605, 所以共有50对。11、某工厂11月份工作忙,星期日不休息,而且从第一天开始,每天都从总厂陆续派相同人数的工人到分厂工作,直到月底,总厂还剩工人240人。如果月底统计总厂工人的工作量是8070个工作日(一人工作一天为1个工作日),且无人缺勤,那么,这月由总厂派到分厂工作的工人共多少人? 解答:11月份有30天。 由题意可知,总厂人数每天在减少,最后为240人,且每天人数构成等差数列,由等差数列的性质可知,第一天和最后一天人数的总和相当于8070÷15=538 也就是说第一天有工人538-240=298人,每天派出(298-240)÷(30-1)=2人, 所以全月共派出2*30=60人。 12、小明读一本英语书,第一次读时,第一天读35页,以后每天都比前一天多读5页,结果最后一天只读了35页便读完了;第二次读时,第一天读45页,以后每天都比前一天多读5页,结果最后一天只需读40页就可以读完,问这本书有多少页? 解答:第一方案:35、40、45、50、55、……35 第二方案:45、50、55、60、65、……40 二次方案调整如下: 第一方案:40、45、50、55、……35+35(第一天放到最后惶熘腥ィ?/P>第二方案:40、45、50、55、……(最后一天放到第一天) 这样第二方案一定是40、45、50、55、60、65、70,共385页。 13、7个小队共种树100棵,各小队种的查数都不相同,其中种树最多的小队种了18棵,种树最少的小队最少种了多少棵? 解答:由已知得,其它6个小队共种了100-18=82棵, 为了使钌俚男《又值氖髟缴僭胶茫�敲戳?个应该越多越好,有: 17+16+15+14+13=75棵, 所以最少的小队最少要种82-75=7棵。 14、将14个互不相同的自然数,从小到大依次排成一列,已知它们的总和是170,如果去掉最大数和最小数,那么剩下的总和是150,在原来排成的次序中,第二个数是多少? 解答:最大与最小数的和为170-150=20,所以最大数最大为20-1=19, 当最大为19时,有19+18+17+16+15+14+13+12+11+10+9+8+7+1=170, 当最大为18时,有18+17+16+15+14+13+12+11+10+9+8+7+6+2=158, 所以最大数为19时,有第2个数为7。 周期问题 基础练习1、(1)○△□□○△□□○△□□……第20个图形是(□)。(2) 第39个棋子是(黑子)。2、 小雨练习书法,她把“我爱伟大的祖国”这句话依次反复书写,第60个字应写(大)。3、 二(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。4、 有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。5、 有同样大小的红、白、黑三种珠子共100个,按照3红2白1黑的要求不断地排下去。……(1)第52个是(白)珠。(2)前52个珠子共有(17)个白珠。6、甲问乙:今天是星期五,再过30天是星期(日)。乙问甲:假如16日是星期一,这个月的31日是星期(二)。2006年的5月1日是星期一,那么这个月的28日是星期(日)。※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?(37÷4=9…1 第一个拿牌的人一定抓到“大王”,)答案 1、(1)□。(2)黑子。2、大。3、男同学。4、第20个数字是(3),这20个数的和是(58)。5、(1)第52个是(白)珠。(2)前52个珠子共有(17)个白珠。6、(日)。(二)。(日)。※ (37÷4=9…1 第一个拿牌的人一定抓到“大王”,)提高练习1、(1)○△□□○△□□○△□□……第20个图形是(□)。(2)○□◎○□◎○□◎○…… 第25个图形是(○)。2、运动场上有一排彩旗,一共34面,按“三红一绿两黄”排列着,最后一面是(绿旗)。3、“从小爱数学从小爱数学从小爱数学……”依次排列,第33个字是(爱)。4、(1)班同学参加学校拔河比赛,他们比赛的队伍按“三男二女”依次排成一队,第26个同学是(男同学)。5、有一列数:1,3,5,1,3,5,1,3,5……第20个数字是(3),这20个数的和是(58)。6、甲问乙:今天是星期五,再过30天是星期(日)。乙问甲:假如16日是星期一,这个月的31日是星期(二)。2006年的5月1日是星期一,那么这个月的28日是星期(日)。 ※ 甲、乙、丙、丁4人玩扑克牌,甲把“大王”插在54张扑克牌中间,从上面数下去是第37张牌,丙想了想,就很有把握地第一个抓起扑克牌来,最后终于抓到了“大王”,你知道丙是怎么算出来的吗?※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)答案1、(1)□。(2)○。2、绿旗。3、爱。4、(1)男同学。5、第20个数字是(3),这20个数的和是(58)。6、(日)。(二)。(日)。 ※ 37÷4=9…1 (第一个拿牌的人一定抓到“大王”)

60道字少奥数题带答案
问题如下: 1、学校美术组有25人,唱歌组比美术组多17人。两个组一共有多少人? 2、妈妈今年32岁,比聪聪大24岁。聪聪多少岁? 3、一根绳子对折再对折,每段是5米,这根绳子长多少米? 4、一块布60米,每次剪5米,剪了9次,还剩多少米? 5、学校买1个足球用了20元,买一个篮球29元,一个篮球比一个足球贵多少元? 6、果园里有27棵苹果树,梨树比苹果树多17棵,梨树有多少棵? 7、小明看一本故事书,第一天比第二天少看6页,第二天看了30页,第一天看了多少本? 8、弟弟今天9岁,哥哥15岁,再过10年哥哥比弟弟大多少岁? 9、把一根木头锯成5段,每锯一次需要5分钟,一共要多少分钟? 10、奶奶买回不到20块糖,3块3块的数还余2块,5块5块的数还余2块,奶奶到底买了多少块糖?
五年级奥数题计算题 1、0.2008+2.008+20.08+200.8+2008=0.2008×(1+10+100+1000+10000)=0.2008×11110=2230.8882、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷……÷(2007÷2008)=1×3/2×4/3×5/4×6/5×……×2008/2007=20083、1+1/3+1/6+1/10+……+1/2009×1004=2×(1/2+1/6+1/12+1/20+……+1/2008×2009)=2×(1-1/2+1/2-1/3+1/3-1/4+……+1/2008-1/2009)=2×(1-1/2009)=2×2008/2009=4016/20094、2006个2006乘2007个2007再乘2008个2008的积的个位数是?2006个2006的个位数字是62007个2007的个位数字是32008个2008的个位数字是66×3×6=108所以2006个2006乘2007个2007再乘2008个2008的积的个位数字是85、325.24+425.24+625.24+925.24+525.24=(300+400+600+900+500)+25.24×5=2700+126.2=2826.26、1/1×4+1/4×7+1/7×10+1/10×13+……+1/2005×2008=(1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+……+1/2005-1/2008)÷3=(1-1/2008)÷3=2007/2008÷3 =669/2008
我不知道?????
五年级奥数题计算题 1、0.2008+2.008+20.08+200.8+2008=0.2008×(1+10+100+1000+10000)=0.2008×11110=2230.8882、1÷(2÷3)÷(3÷4)÷(4÷5)÷(5÷6)÷……÷(2007÷2008)=1×3/2×4/3×5/4×6/5×……×2008/2007=20083、1+1/3+1/6+1/10+……+1/2009×1004=2×(1/2+1/6+1/12+1/20+……+1/2008×2009)=2×(1-1/2+1/2-1/3+1/3-1/4+……+1/2008-1/2009)=2×(1-1/2009)=2×2008/2009=4016/20094、2006个2006乘2007个2007再乘2008个2008的积的个位数是?2006个2006的个位数字是62007个2007的个位数字是32008个2008的个位数字是66×3×6=108所以2006个2006乘2007个2007再乘2008个2008的积的个位数字是85、325.24+425.24+625.24+925.24+525.24=(300+400+600+900+500)+25.24×5=2700+126.2=2826.26、1/1×4+1/4×7+1/7×10+1/10×13+……+1/2005×2008=(1-1/4+1/4-1/7+1/7-1/10+1/10-1/13+……+1/2005-1/2008)÷3=(1-1/2008)÷3=2007/2008÷3 =669/2008
我不知道?????

奥数题加答案
一、 计算题。 ( 共100题) 1. 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?答案:妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为72÷(1+4+4)=8(岁),妈妈的年龄是8×4=32(岁),爸爸和妈妈同岁为32岁.2. 甲乙丙丁各自参加篮球、排球、足球和象棋。现在知道:(1)甲的身材比排球运动员高。(2)几年前,丁由于事故,失去了双腿。(3)足球运动员比丙和篮球运动员都矮。猜猜就甲乙丙丁各参加什么项目?答案:由(2)可知丁肯定是象棋运动员,由(1)(3)可知甲不是排球和足球运动员,那么甲只能是篮球运动员,由(3)可知丙不是足球运动员,那么只能是排球运动员了,剩下的乙就是足球运动员了。3. 联欢会上,要把10个水果装在6个袋子里,要求每个袋子中装的水果都是双数,而且水果和袋子都不剩。应该怎样装?答案:每个袋子放2个,再把5个袋子装在最后一个袋子里4. 淘气有300元钱,买书用去56元,买文具用去128元,淘气剩下的钱比原来少多少元?答案:比原来少的钱就是花掉的钱,小淘气一共花了:56+128=184(元),所以比原来的钱少了184元5. 观察下列各组图的变化规律,并在方框里画出相关的图形? 答案: 6. 兄弟两人去钓鱼,一共钓了23条,哥哥钓的鱼比弟弟的三倍还多3条,哥哥弟弟各钓了多少条?答案:23-3=2020/(3+1)=5条弟弟钓了5条哥哥钓了5*3+3=18条。7. 某个外星人来到地球上,随身带有本星球上的硬币1分、2分、4分、8分各一枚,如果他想买7分钱的一件商品,他应如何付款?买9分、10分、13分、14分和15分的商品呢?他又将如何付款?答案:这道题目的实质是要求把7、9、10、13、14、15各数按1、2、4、8进行分拆. 7=1+2+4 9=1+8 10=2+8 13=1+4+8 14=2+4+8 15=1+2+4+8 外星人可按以上方式付款.8. 盘子里有香蕉、苹果、桔子三种水果。小刚、小林、小红各拿了一个不同的水果。小刚说:“每人只吃一种水果,我不吃桔子。”小林说:“我既不吃苹果,也不吃桔子。”( )拿的香蕉,( )拿的桔子,( )拿的苹果。答案:(小林)拿的香蕉,(小红)拿的桔子,(小刚)拿的苹果。9. 有一个四位数,各位数字之和等于34。符合这个条件的四位数有哪些?答案:8899、8989、8998、9889、9898、9988、7999、9799、9979、999710. 已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?答案:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。再根据椅子的价钱,就可求得一张桌子的价钱。 解一把椅子的价钱 288÷(10-1)=32(元) 一张桌子的价钱 32×10=320(元) 答一张桌子320元,一把椅子32元。11. 摆硬币:你能用 10 个硬币,摆成 5 行,并且每行有 4 个硬币吗?答案: 12. 要把一个篮子里的5个苹果分给5个孩子,使每人得到1个苹果,但篮子里还要留下一个苹果,你能分吗?答案:能.最后一个苹果留在篮子里不拿出来,把它们一同送给一个孩子.这是因为“篮子里留下一个苹果和每个孩子分得一个苹果”这两个条件并不矛盾13. 小林家有大、小两个鱼缸,原来两个鱼缸里的金鱼条数相等,如果从小鱼缸里拿4 条放到大鱼缸里,这时大鱼缸里的金鱼条数是小鱼缸里的2 倍,小鱼缸里原来有鱼多少条?答案:原来大、小两个鱼缸里鱼的条数相等,如果从小鱼缸里拿4 条给大鱼缸,这时大鱼缸里的鱼比小鱼缸里的鱼多8 条。变化以后大鱼缸里的金鱼条数是小鱼缸里的2 倍,也就是比小鱼缸里的金鱼条数多1 倍,而这1 倍数正好是8 条。所以,原来小鱼缸里的鱼的条数是12条。14. 一个筐里装着 52个苹果,另一个筐里装着一些梨。如果从梨筐里取走18个梨,那么梨就比苹果少12个。原来梨筐里有多少个梨?答案:有几种思考方法 (1)根据取走 18个梨后,梨比苹果少 12个,先求出梨筐里现有梨 52-12=40(个),再求出原有梨(52-12)+18=58(个)。 (2)根据取走18个梨后梨比苹果少 12个,我们设想"少取 12个"梨,则现有的梨和苹果一样多,都是52个。这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨 52+(18-12)=58(个)。 (3)根据取走 18个梨后梨比苹果少 12个,我们设想不取走梨,只在苹果筐里加入18个苹果,这时有苹果52+18=70(个)。 这样一来,现有苹果就比原来的梨多了12个。由此可求出原有(52+18)-12=58(个)。15. 小林家有大、小两个鱼缸,原来两个鱼缸里的金鱼条数相等,如果从小鱼缸里拿4条放到大鱼缸里,这时大鱼缸里的金鱼条数是小鱼缸里的2倍,小鱼缸里原来有鱼多少条?答案:原来大、小两个鱼缸里鱼的条数相等,如果从小鱼缸里拿4条给大鱼缸,这时大鱼缸里的鱼比小鱼缸里的鱼多8条。变化以后大鱼缸里的金鱼条数是小鱼缸里的2倍,也就是比小鱼缸里的金鱼条数多1倍,而这1倍数正好是8条。所以,原来小鱼缸里的鱼的条数是12条。16. 有人以为6是个吉利数字,他们得到的东西的数量都能要够用“6”表示才好.现有150块糖要分发给5个人,请你帮助想一个吉利的分糖方案.答案:150=66+66+6+6+617. 小兵和小军用玩具枪做打靶游戏,见下图所示.他们每人打了两发子弹.小兵共打中6环,小军共打中5环.又知没有哪两发子弹打到同一环带内,并且弹无虚发.你知道他俩打中的都是哪几环吗? 答案:小兵打中的是1环和5环,小军打中的是2环和3环.18. 红红有3件上衣,2条裙子,一共有几种穿法?答案:619. 把写着1到100这100个号码的牌子,像下面这样一次分给四个人,你知道第73号牌子会落在谁的手里吗? 答案:案观察会发现分给小明的牌子号码是1,5,9,13···号码除以4余1;分给小英的牌子号码是2,6,10,14···除以4余2;分给小芳的牌子号码是3,7,11···除以4余3;分给小军的牌子号码是4,8,12···除以4余0;(整除)因此,试用4除73看看余几?73÷4=18···余1.可见73号牌子会落到小明手里。20. 4个男同学和3个女同学进行乒乓球单打比赛,如果每个男同学和每个女同学都打1盘,一共要打几盘?答案:1221. 1、从左下角的2开始,依次在数字间填上“+”或“-”,使最后结果等于7 2 4 6 9 5 1 = 72、学校小会议室,第一排有4个座位,以后每一排都比前一排多2个座位,最后一排有18个座位,这个会议室一共有多少个座位?答案:案1、从左下角的2开始,依次在数字间填上“+”或“-”,使最后结果等于72 4 6 9 5 1=72 + 4 + 6 – 9 + 5 – 1 = 72、学校小会议室,第一排有4个座位,以后每一排都比前一排多2个座位,最后一排有18个座位,这个会议室一共有多少个座位?(18—4)÷2+1=8(排)(18+4)×8÷2=88(个)22. 中午放学的时候,还在下雨,大家都盼着晴天.小明对小英说:“已经连续三天下雨了,你说再过36小时会出太阳吗?”小朋友你说呢?答案:不会。因为是晚上。23. 根据规律填数 (1)2、4、6、8、( )、( ) (2)1、4、7、( )、( ) (3)30、25、20、( )、( )答案:案(1) 在这数列中,后一个比前一个数多2,根据这个规律,括号里里应该填10、12; (2) 在这个数列里,后一个比前一个数多3,根据这个规律,括号里里应该填10、13; (3) 在这个数列里,前一个数比后一个数多5,根据这个规律,括号里应填15、10。24. 20只小动物排一排,从左往右数第16只是小兔,从右往左数第10只是小鹿,求从小鹿数到小兔,一共有几只小动物?答案:因为小兔的右边还有20-16=4只动物,小鹿的左边还有20-10=10 只动物,所以从小鹿到小兔一共有20-4 -10=6只动物25. 下面两个图形能拼成一个长方体吗? 答案:左边图形第一层有6个小正方体,第二层有3个小正方体,要想拼成长方体,第二层差了3个小正方体,我们可以用右图中右边的三个小正方体补上,这样只剩下了右图中左边的4个小正方体,可现在需要在左图的第三层放6个小正方体才可以拼成一个长方体,所以这两个图形不能拼成一个长方体。26. 用○、★、△代表三个数,有○+○+○=15,★+★+★=12,△+△+△=18,○+★+△=( )答案:上面算式中的○、★、△分别代表三个数,根据三个相同加数的和分别是15、12、18,可知○=5,★=4,△=6,又5+4+6=15,所以( )内应填15。27. 1写到99,共写了多少个数字"1"?答案:分类计算“1”出现在个位上的数有1,11,21,31,41,51,61,71,81,91共10个;“1”出现在十位上的数有10,11,12,13,14,15,16,17,18,19共10个;共计10+10=20个.28. 小雷、二雷、大雷去称体重,大雷和小雷一起称是50千克,小雷和二雷一起称是49千克,三个人一起称是76千克。小雷的体重是( )千克。答案:要用比较的方法,要抓住"三个人一起称76千克"这个重要条件.又知"大雷和小雷一起称50千克",这样就可先求出二雷的体重,或者根据"小雷和中雷一起称是49千克"可求出小雷的体重。 二雷的体重76-50=26(千克) 小雷的体重49-26=23(千克) 大雷的体重50-23=27(千克)29. 一只小兔从起点向前跳了5个格,接着向后跳了4个格;然后又向前跳了6个格,再向后跳了10个格,最后停下.这时小兔停在起点的前面还是后面?距起点几个格?答案:第一步,在前面的第五格。第二步,向后跳4个格,5-4=1,在前面第一个格。第三步,又向前跳6个格,1+6=7,在前面第七个格。第四步,又向后跳10个格,10-7=3,在后面第三个格。30. 冬冬到文化用品商店买铅笔和本子,全部的钱可以买6支铅笔和11本本子,或者8支铅笔和7本本子,如果全部买本子,可以买( )本。 答案:6支铅笔+11本本子所用的钱=8支铅笔+7本本子所用的钱,等式两边都减去6支铅笔和7本本子,得4本本子所用的钱=2支铅笔用的钱数,即1支铅笔的钱数=2本本子的钱数,冬冬的钱如果全都买本子,可以买2×6+11=23(本)。
数字改变为 倍数,孩子是1,大人是4,父母同岁。72÷(1+4+4)=8,孩子是8岁,大人是32岁.
小明小华捉完鱼。小明说如果你把你捉的鱼给我一条,我的鱼就是你的两倍。如果我给你一条,咱们就一样多了。请算出两人各捉了多少条鱼。
假设孩子的年龄是x父母的年龄就是4x,那么父母和孩子年龄之和就是9x,那么9x等于72,得出孩子年龄是8岁,父母年龄各是32
把孩子的岁数看做“1",爸爸妈妈同是孩子的 四倍。72÷(1十4十4)=8(岁)爸爸妈妈的岁数:4x8=32(岁)
数字改变为 倍数,孩子是1,大人是4,父母同岁。72÷(1+4+4)=8,孩子是8岁,大人是32岁.
小明小华捉完鱼。小明说如果你把你捉的鱼给我一条,我的鱼就是你的两倍。如果我给你一条,咱们就一样多了。请算出两人各捉了多少条鱼。
假设孩子的年龄是x父母的年龄就是4x,那么父母和孩子年龄之和就是9x,那么9x等于72,得出孩子年龄是8岁,父母年龄各是32
把孩子的岁数看做“1",爸爸妈妈同是孩子的 四倍。72÷(1十4十4)=8(岁)爸爸妈妈的岁数:4x8=32(岁)

小学奥数题及答案
小学奥数题及答案1 商店进了一批商品,按40%加价出售.在售出八成后,为了尽快销完,决定五折处理剩余商品,而且商品全部出售后,突然被征收了150元的附加税,这使得商店的实际利润率只是预期利润率的一半,那么这批商品的进价是多少元?(注:附加税算作成本) 答案与解析: 理解利润率的含义,是利润在成本上的百分比。 设进价x元,则预期利润率是40% 所以收入为(1+40%)x×0.8+0.5×(1+40%)x×0.2=1.26x 实际利润率为40%×0.5=20% 1.26x=(1+20%)(x+150) 得x=3000 所以这批商品的进价是3000元。 小学奥数题及答案2 三年级奥数题:和差倍数问题(一) 1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米? 2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。 3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克? 三年级奥数题:和差倍数问题(二) 1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少? 2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少? 3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟? 三年级奥数题:和差倍数问题(三) 1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少? 2、用中国象棋的车、马、炮分别表示不同的自然数。如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少? 3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元? 三年级奥数题:和差倍数问题(四) 1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟? 2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分? 三年级奥数题:速算与巧算 【试题】巧算与速算:41×49=() 三年级奥数题:植树问题 【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树()棵。 三年级奥数应用题解题技巧(一) 【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时? 三年级奥数应用题解题技巧(二) 【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天? 三年级奥数应用题解题技巧(三) 【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答) 三年级奥数应用题解题技巧(四) 【试题】两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台? 三年级奥数应用题解题技巧(五) 【试题】同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。 补充1:“照这样计算,9个同学可以擦多少块玻璃?” 补充2:“照这样计算,要擦40块玻璃,需要几个同学?” 三年级奥数应用题解题技巧(六) 【试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分? 三年级奥数应用题解题技巧(七) 【试题】 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完? 小学奥数题及答案3 一个房间中有100盏灯,用自然数1,2,…,100编号,每盏灯各有一个开关。开始时,所有的灯都不亮。有100个人依次进入房间,第1个人进入房间后,将编号为1的倍数的`灯的开关按一下,然后离开;第2个人进入房间后,将编号为2的倍数的灯的开关按一下,然后离开;如此下去,直到第100个人进入房间,将编号为100的倍数的灯的开关按一下,然后离开。问:第100个人离开房间后,房间里哪些灯还亮着? 答案与解析: 对于任何一盏灯,由于它原来不亮,那么,当它的开关被按奇数次时,灯是开着的;当它的开关被按偶数次时,灯是关着的; 根据题意可知,当第100个人离开房间后,一盏灯的开关被按的次数,恰等于这盏灯的编号的因数的个数; 要求哪些灯还亮着,就是问哪些灯的编号的因数有奇数个。显然完全平方数有奇数个因数。所以平方数编号的灯是亮着的。所以当第100个人离开房间后,房间里还亮着的灯的编号是:1,4,9,16,25,36,49,64,81,100。 小学奥数题及答案4 1.从一点引出两条()就组成一个角. A.直线B.线段C.射线 2.一个四边形只有一组对边平行,这个四边形是(). A.平行四边形B.任意四边形C.梯形 3.把长方形拉成一个四条边长度保持不变的平行四边形后,它的面积(). A.比原来大B.比原来小C.与原来相等 4.下列图形中,()的对称轴有无数条. A.正方形B.等边三角形C.圆 5.用两根同样长的铁丝,分别围成一个正方形和一个圆.正方形的面积和圆的面积相比较,(). A.正方形的面积大B.同样大C.圆的面积大 小学奥数题及答案5 某小组在下午6点后开了一个会,刚开会时小张看了一下手表,发现那时表的分针与时针垂直.下午7点之前小组会就结束了,散会时小张又看了一下表,发现分针与时针仍然垂直,那么这个小组会共开了多少分钟? 分析: 分针的速度是每分钟360÷60=6度,时针的速度是每分钟360÷60×5÷60=0.5度,开会时分针落后时针90度,开完会后,分针超时针90度,再根据路程问题中的追及问题进行解答. 解答: 解:分针的速度是: 360÷60=6(度/分), 时针的速度是: 360÷60×5÷60=0.5(度/分), 开会用的时间是: (90+90)÷(6-0.5), =180÷5.5, =32(8/11)分钟. 答:会共开了分钟32(8/11). 小学奥数题及答案6 行程:(高等难度) 甲,乙两站相距300千米,每30千米设一路标,早上8点开始,每5分钟从甲站发一辆客车开往乙站,车速为60千米每小时,早上9点30分从乙站开出一辆小汽车往甲站,车速每小时100千米,已知小汽车第一次在某两相邻路标之间(不包括路标处)遇见迎面开来的10辆客车,问:从出发到现在为止,小汽车遇见了多少辆客车? 行程答案: 小汽车出发遇到第一辆客车是在(300-60×1.5)÷(100+60)=21/16小时,小汽车每行一段需要30÷100=3/10小时,此时在(21/16)÷(3/10)=4又3/8段的地方相遇。遇到第一辆客车后,每隔5÷(100+60)=5/160小时遇到一辆客车,当在端点遇到客车时,每断路只能再遇到9辆车[(3/10)÷(5/160)=9.6],因此过路标少于3/10-9×(5/160)=3/160小时遇到客车时,才能满足条件。当小汽车行完5段,就刚好在路标处遇到第7辆,因此这段只能遇到9辆,下一次刚好能遇到10辆,所以共遇到了7+9+10=26辆。 小学奥数题及答案7 某次选拔考试,共有1123名同学参加,小明说:"至少有10名同学来自同一个学校."如果他的说法是正确的,那么最多有多少个学校参加了这次入学考试? 答案与解析: 本题需要求抽屉的数量,反用抽屉原理和最"坏"情况的结合,最坏的情况是只有10个同学来自同一个学校,而其他学校都只有9名同学参加,则(1123-10)÷9=123……6,因此最多有:123+1=124个学校(处理余数很关键,如果有125个学校则不能保证至少有10名同学来自同一个学校) 小学奥数题及答案8 小花和小明超爱吃糖果。她们俩一共有64颗糖果,而且,她俩糖果数目的积可以整除4875。已知小明的糖果比小花多,那么小花比小明多多少糖果呢? 答案与解析: 所以4875可以被以下数整除:3,5,13,15,25,39,75,125,…(后面的数大于64不用考虑)其中,相加为64的为25和39,所以小花有25颗,小明有39颗,所以小明比小花多14颗。看到整除很自然想到数论,糖果数目一定是整数,从而可以通过分解质因数来解答。 小学奥数题及答案9 时间路程问题: 小学四年级奥数竞赛题:甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟? 时间路程答案: 解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟 解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟 答:他走后一半路程用了42.5分钟。 小学奥数题及答案10 设a、b都表示数,规定a△b=3×a-2×b, ①求3△2,2△3; ②这个运算“△”有交换律吗? ③求(17△6)△2,17△(6△2); ④这个运算“△”有结合律吗? ⑤如果已知4△b=2,求b。 分析: 分析解定义新运算这类题的关键是抓住定义的本质,本题规定的运算的本质是:用运算符号前面的数的3倍减去符号后面的数的2倍。 解:①3△2=3×3-2×2=9-4=5 2△3=3×2-2×3=6-6=0。 ②由①的例子可知“△”没有交换律。 ③要计算(17△6)△2,先计算括号内的数,有:17△6=3×17-2×6=39;再计算第二步 39△2=3×39-2×2=113, 所以(17△6)△2=113。 对于17△(6△2),同样先计算括号内的数,6△2=3×6-2×2=14,其次 17△14=3×17-2×14=23, 所以17△(6△2)=23。 ④由③的例子可知“△”也没有结合律.⑤因为4△b=3×4-2×b=12-2b,那么12-2b=2,解出b=5。

100道奥数题,我要题和答案,
、186576×199911-199912×186575=( )。 2、找规律填数: ①11,12,14,18,26( )。 ②1,2,2,4,8,32( )。 3、连续的六个自然数,前三个数的和是60,那么后三个数的和是( )。 4、甲、乙、丙三数之和是116,甲数除以乙数,丙数除以甲数,都是商2余1,那么,乙数是( )。 5、某商店规定可以用3个空汽水瓶换一瓶汽水,小明买了8瓶汽水,喝完后用空汽水瓶去换汽水,他一共可以喝( )瓶汽水。 6、下图中有( ) 个三角形。如图: 7、被除数是3320,商是150,余数是20,除数是( )。 8、在下面的式子中填上括号,使等式成立。 5 × 8 + 16 ÷ 4 – 2 = 20 9、光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台,需要( )分钟。 10、现有松树和柏树以隔株相间的种法,种成9行9列的方阵,问这个方阵中共有松树和柏树( )棵。 11、甲、乙两个粮库原来共存大米320吨,后来从甲粮库运出40吨,给乙库运进20吨,这时甲库存的大米是乙库的2倍,甲粮库原来存大米( )吨,乙粮库原来存大米( )吨。 12、有一圆形跑道长690米,甲乙两人同时从起点出发,甲每分钟行60米,乙每分钟行55米,( )小时后甲第一次追上乙。 13、一座大桥2400米,一列火车通过大桥时每分钟行900米,从车头开上桥到车尾离开桥共需要3分钟。这列火车长( )米。 14、填数: 7 6 15、计算9999+999+99+9+8=( ) 16、一桶油连桶重120千克,用去一半后,连桶还重65千克。这桶里原有油( )千克,空桶重( )千克。 17、观察下面各数的变化规律,然后填空。(1)8、12、16、20、( )(2)7、2、5、2、3、2、( )、( )(3)5、6、8、12、20、( )(4)792、693、594、( )、( ) 18、在数字之间填上合适的运算符号,使等式成立。 5 5 5 5 5=10 5 5 5 5 5=11 5、有一根木料,要锯成4段,每锯开一处,需要4分钟。全部锯完需要( )分钟。 19、三只笼里共养了18只兔子。如果从第一只笼里取出4只放到第二只笼里,再从第二只笼里取出3只放到第三只笼里。那么三只笼里的兔子就一样多。原来三只笼里各养了( )只、( )只、( )只。 20、贺林家养鸡的只数是鹅的6倍,鸭比鹅多8只,鸭有15只。贺林家养了( )只鸡。 21、今天是星期日,从今天算起,第60天是星期( )。 22、有同样大小的红、白、黑珠共90个,按3个红的后2个白的,再1个黑的排列。那么黑珠共有( )个,第68个是( )色的。 23、学校有排球、足球共50个,排球比足球多4个,排球有( )个,足球有( )个。 24、哥哥和弟弟共有画片38张,弟弟给哥哥3张后还比哥哥多2张,弟弟原有( )张画片,哥哥原有( )张画片。 25、已知两数的和是84,大数是小数的6倍,大数是( ),小数是( ) 26、甲乙两个仓库共存粮400千克。已知甲仓库存粮是乙仓库存粮的5倍少44千克,甲仓库存粮( )千克,乙仓库存粮( )千克。 27、一个数减去16加上24,再除以7得36,这个数是( ) 28、养鸡专业户养的公鸡比母鸡少285只,养的母鸡是公鸡的6倍。养的公鸡( )只,母鸡( )只。 29、苹果的个数是梨的3倍,如果每天吃2个苹果、1个梨,若干天后,苹果还剩7个,梨正好全部吃完。原来有苹果( )个。 30、二年级三个班修补图书45本。一班和二班修补了28本,二班和三班修补了30本 ,一班修补( )本,二班修补( )本,三班修补( )本。 31、用3、6、9三个数字可以组成( )个三位数。 32、一只猴子的重量等于两只兔子的重量,一只兔子的重量等于两只小鸡的重量,那么一只猴子的重量等于( )小鸡的重量。 33、在一桩谋杀案中,有两个嫌疑犯甲和乙。另外四个证人正在接受讯问。第一个证人说:“我只知道甲是无罪的。” 第二个证人说:“我只知道乙是无罪的。” 第三个证人说:“前面两个证词至少一个是真的。” 第四个证人说:“我可以肯定第三个证人的证词是假的。” 通过调查研究,已证实第四个证人说了实话。请你分析一下谁是凶手? 34、 (0.75×42.7+57.3-0.573×25)÷3×7972 = 35、 计算:1+2+3+…+10+11+12+11+10+…+3+2+1. 36、 计算:2000×1999-1999×1998+1998×1997-1997×1996+1996×1995-1995×1994。 37、 计算:(599+672×428)÷(426×672+1943) 38、 算式2×3×5×7×11×13×17最后得到的乘积中,所有数位上的数字和是多少? 39、 用0、1、2、3、4、5能组成多少个非零偶数? 40、 把0、1、2、3、4五个数字分别填在下式的方格中(每个数字只能用一次),组成一个乘法算式,并使它的积最大。 □□□×□□ 41、 用1,2,3,4,5,6,7,8这八个数字组成两个四位数,使它们的乘积最大,这两个数是多少? 42、 把1,2,3,4,…,999这999个数均匀排成一个大圆圈,从1开始数:隔过1划掉2,3,隔过4,划掉5,6……这样每隔一个数划掉两个数,转圈划下去。问:最后剩下哪个数?为什么? 43、 一次知识竞赛中,有3道题,每题满分7分,给分时只能给出自然数1、2、3、4、5、6、7分。已知竞赛后每人3道题得分的积都是36,且每道题三人得分互不相同,那么参加竞赛的最多有几人? 44、 把下图各分成四个大小相等,形状相同的图形。 45、 在下面图形中有多少个长方形(包括正方形)? 46、 如图,一个圆从A点出发,沿一个正三角形边滚动一周回到A点,如果正三角形边长等于圆的周长,那么这圆旋转了多少度? 47、 将一副三角板摆放在一起(可以叠放),使同时出现15°,30°,45°,60°,75°,90°,105°这七个角,请画图说明并表示出这些角。 48、 仓库里有两个货位,第一货位上有78箱货物,第二货位上有42箱货物,两个货位上各运走了相同的箱数之后,第一货位上的箱数还比第二货位上的箱数多2倍。两个货位上各运走了多少箱货物? 49、 有一座山里有若干个大和尚和若干个小和尚,已知7个大和尚每天共吃41个馒头,29个小和尚每天共吃11个馒头,而平均每个和尚恰好每天吃一个馒头,那么在这座山里至少有几个和尚? 50、 张彬买了3斤鸭和4斤鸡,共付出9元6角,李杰买了3斤鸡和4斤鸭,付出9元3角,每斤鸡和每斤鸭各是多少元? 51、 在双轨铁路上,有一列每小时运行72千米的客车,客车司机发现对面开来一列每小时运行90千米的货车,这时货车从他身边驶过用了8秒钟,求货车的车长? 52、 一个车间原有男工人数比女工多45人,如果调走男工5人,那么男工数正好是女工的3倍,求原有男工多少人? (五)实践活动 53、 明明、冬冬、蓝蓝、静静、思思和毛毛六人参加一次会议,见面时每两人都要握一次手,明明已握了五次手,冬冬已握了四次手,蓝蓝已握了三次手,静静已握了两次手,思思握了一次,问毛毛已握了几次手? 54、 三个口袋,有一个装着两个黑球,另一个装着两个白球,还有一个装着一个黑球一个白球。可是,口袋外面的标签都贴错了,标签上写的字与袋子里球的颜色不一样。你能不能只从一个口袋里摸出一个球,就能说出这三个口袋各装的是什么颜色的球? 55、 甲说:“我10岁,比乙小2岁,比丙大1岁。” 乙说:“我不是年龄最小的,丙和我差3岁,丙是13岁”。丙说:“我比甲年龄小,甲 11岁,乙比甲大3岁。” 以上每人所说的三句话中都有一句是错的,请确定甲、乙、丙三人的年龄。 56、 陈、李、王三位老师担任五(1)班的语文、数学、思品、体育、音乐和美术六门课的教学,每人教两门,现在知道,(1)思品老师和数学老师是邻居;(2)李老师最年轻;(3)陈老师喜欢和体育教师、数学老师交谈;(4)体育老师比语文老师年龄大;(5)李老师、音乐老师、语文老师三人经常一起去游泳。你能分析各人分别教的是哪两门课吗? 57、 A、B、C、D、E、F六人分别是中国、日本、美国、英国、法国、德国人。现在已知: (1)A和中国人是医生;(2)E和法国人是教师; (3)C和日本人是警察;(4)B和F曾当过兵,日本人从未当过兵; (5)英国人比A年龄大,德国人比C年龄大; (6)B同中国人下周要到中国去旅行,而C同英国人下周要到瑞士去度假。 问:A、B、C、D、E、F各是哪一国人? 58、 有12个外表上一样的球,其中只有一个是次品,用天平只称三次,你能找出次品吗? 59、李平和王丽到新华书店去买书,他们选中了同一本书,可是他们带的钱不够。李平差3元,王丽差1.5元,只好合买一本,钱刚好够,这本书多少元? 60、49名探险队员要过一条河,但他们只带了1只可一次乘坐7人的橡皮艇。只知道过1次河需要3分钟,请你帮助算一下,全体队员都渡到河岸需要多少分钟? 巧算:99999÷5+9999÷5+999÷5+99÷5+9÷5 巧算:222×17+333×4+666×9
1.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高( )% 设一月是100,则二月是120,三月是120*1。2=1442.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是( )。:这个六位数最左一位数字是3,为了尽可能小,左数第二位放上0,左数第三位放上1,左数第四位放上2,因为最左一位数字是3,这个六位数的各位数字都不相同,左数第五位只能放上4。因为连续的自然数中每11个就有一个11的倍数,所以从301240,到301249中,可能有11的倍数,如果没有或这个数有重复的数字,我们可以将4换成5再找11的倍数,如仍没有找到可再换成7,……,直至找到符合条件的六位数。由于11的倍数的偶数位数字之和与奇数位数字之和的差为11的倍数,此数字的自左至右1、3、5位之和为3+1+4=8,于是,该数的最右面一位应为:8-0-2=6,301246能被11整除,且符合没有重复数字的条件。即这样的六位数中最小的是3012463.某次数学竞赛,试题共是10道,每做对一题得8分,每错一题倒扣5分。小明最终得41分,她做对( )题设答对x道 则答错10-x道 8x-5(10-x)=41 解得x=7 所以她做对7道4.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个床位。问宿舍共有几间?代表共有几人?设宿舍房间为X人数为Y2X=Y-123X=Y+2解得X=14 Y=40 宿舍共有14间,代表共有40人。
1.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高( )% 设一月是100,则二月是120,三月是120*1。2=1442.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是( )。:这个六位数最左一位数字是3,为了尽可能小,左数第二位放上0,左数第三位放上1,左数第四位放上2,因为最左一位数字是3,这个六位数的各位数字都不相同,左数第五位只能放上4。因为连续的自然数中每11个就有一个11的倍数,所以从301240,到301249中,可能有11的倍数,如果没有或这个数有重复的数字,我们可以将4换成5再找11的倍数,如仍没有找到可再换成7,……,直至找到符合条件的六位数。由于11的倍数的偶数位数字之和与奇数位数字之和的差为11的倍数,此数字的自左至右1、3、5位之和为3+1+4=8,于是,该数的最右面一位应为:8-0-2=6,301246能被11整除,且符合没有重复数字的条件。即这样的六位数中最小的是3012463.某次数学竞赛,试题共是10道,每做对一题得8分,每错一题倒扣5分。小明最终得41分,她做对( )题设答对x道 则答错10-x道 8x-5(10-x)=41 解得x=7 所以她做对7道4.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个床位。问宿舍共有几间?代表共有几人?设宿舍房间为X人数为Y2X=Y-123X=Y+2解得X=14 Y=40 宿舍共有14间,代表共有40人。
