小学数学五年级位置知识点总结
1,横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。 2,用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。 3,用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。 4,写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。 5,数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。 6,一组数对只能表示一个位置。 7,表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。  延伸简介: 1,数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。 2,作用:一组数对确定唯一一个点的位置,经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。 3,在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。 4,数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。
小学数学五年级位置知识点总结 小学数学五年级位置知识点总结我来答甜梦05428LV.3 2017-12-16位置重要知识点整理1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。*;(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行(从左往右看)(从下往上看)4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。 5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上面。
位置重要知识点整理 1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行(从左往右看)(从下往上看)4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上 望采纳
位置重要知识点整理 1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行(从左往右看)(从下往上看)4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上 望采纳 谢谢
位置重要知识点整理 1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或 字母括起来,再用逗号隔开。
小学数学五年级位置知识点总结 小学数学五年级位置知识点总结我来答甜梦05428LV.3 2017-12-16位置重要知识点整理1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。*;(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行(从左往右看)(从下往上看)4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。 5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上面。
位置重要知识点整理 1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行(从左往右看)(从下往上看)4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上 望采纳
位置重要知识点整理 1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或字母括起来,再用逗号隔开。例如:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行(从左往右看)(从下往上看)4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。 如:(2,4)和(2,7)都在第2列上。5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上 望采纳 谢谢
位置重要知识点整理 1、数对:一般由两个数组成。作用:数对可以表示物体的位置,也可以确定物体的位置。 2、行和列的意义:竖排叫做列,横排叫做行。3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的数字或 字母括起来,再用逗号隔开。

小学数学知识点总结(全部)
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?  一、重视课内听讲,课后及时进行复习. 新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题. 二、多做习题,养成解决问题的好习惯. 如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用. 三、调整心态并正确对待考试. 首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.  由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
小学数学一年级(上): 1. 数一数 2. 比一比(多少,长短,高矮) 3. 1-5的认识与加减法(读写,顺序,大小比较) 4. 认识图形和物体(标准图形的直观认识) 5. 分类 6. 6-10的认识和加减(读写,顺序,大小比较,和小于10) 7. 11-20的认识 (读写,顺序,大小比较) 8. 认识钟表(简单时间的认识) 9. 20以内数字的加(进位加) 小学数学一年级(下): 1. 位置(上下左右) 2. 20以内数字的减(退位减) 3. 图形的拼组(动手,简单图形的简单性质) 4. 100以内数字的认识 (读写,顺序,大小比较) 5. 人民币(各面值人民币的认识,换算,使用) 6. 100以内数字的加减(一) (整十加个位数,估算) 7. 认识时间(读写,换算,简单的加减) 8. 找规律 9. 统计 小学数学二年级(上): 1. 长度单位 (长度单位,测量) 2. 100以内的加减(二) (不进位,进位,不退位,退位。竖式计算,估算) 3. 角的初步认识 (角的构成,直,锐,钝角) 4. 乘法的初步认识(2到6的乘法) 5. 观察物体(视角) 6. 表内乘法(7到9的乘法) 7. 统计(单式条形统计图,简单的分析) 8. 数学广角(极其简单的数学推理) 小学数学二年级(下): 1. 解决问题(复习) 2. 表内除法(一)(2到6的除法) 3. 图形变换(平移,旋转,锐角,钝角,画角) 4. 表内除法(二)(7到9的除法) 5. 万以内数字的认识(读写,顺序,大小比较) 6. 克和千克 (重量单位) 7. 万以内数字的加减法(一) (整百整千的加减,估算) 8. 统计(表格统计图,学会统计) 9. 找规律 小学数学三年级(上): 1. 测量 (各长度,重量单位的认识)(没学角度的测量) 2. 万以内数字的加减法(二) (非整十数之间的加减:进退位、竖式计算,估算) 3. 四边形 (平行四边形,长方形、正方形周长) 4. 有余数的除法 (整除后、、、) 5. 时、分、秒(换算,时间概念) 6. 多位数乘以一位数(表内乘法后、、、估算) 7. 分数的初步认识(读写,大小比较) 8. 可能性 9. 数学广角(排序问题,人民币购物问题) 小学数学三年级(下): 1. 位置与方向(大致方位) 2. 除数是一位数的除法(较大数除小数) 3. 统计 (单式条形统计图,平均数) 4. 年、月、日 (关系,闰年,月份天数,24小时制) 5. 两位数之间的乘法(较大数乘较大数,估算) 6. 面积(长方形,正方形,单位) 7. 小数的初步认识(读写,顺序,大小比较) 8. 解决问题(复习) 9. 数学广角(集合问题?) 小学数学四年级(上) 1. 大数的认识 (读写,顺序,大小比较) 2. 角度的测量 (读写,量角器,其他角) 3. 三位数乘以两位数(、、、、估算) 4. 平行四边形和梯形(垂直,平行,点线距离,定义,画法,底边,高) 5. 除数是两位数的除法(较大数除较大数) 6. 统计(复式条形统计按图) 7. 数学广角(时间分配问题) 小学数学四年级(下): 1. 四则运算 (加减乘除,运算顺序) 2. 位置与方向 (具体方位,地点) 3. 运算规律与简便计算 (计算捷径) 4. 小数的意义和性质(读写,大小比较,性质,小数点,近似值) 5. 三角形(认识,稳定性,边关系,特殊三角形,内角和) 6. 小数的加减法(小数点对齐,运算规律) 7. 统计(单式折线统计图) 8. 数学广角(植树问题) 小学数学五年级(上): 1. 小数乘法(小数乘整数,小数乘小数,近似值) 2. 小数除法(小数除整数,整数除小数)(近似值) 3. 观察物体(视角,判断) 4. 简易方程(字母代 表数,读写,代数式,含未知数的等式,解方程,应用) 5. 多边形的面积 (平行四边形,三角形,梯形) 6. 统计和可能性 (概率,中位数,公平性) 7. 数学广角 (数字在实际生活中代表的含义----身份证) 小学数学五年级(下): 1. 图形的变换 (轴对称,中心对称,旋转角度的重合问题) 2. 因数与倍数(2,3,5倍数,最大公因数、最小公倍数,分解质因数,解答问题) 3. 长方体和正方体(表面积,体积,其他性质) 4. 分数的意义和性质 (读写,大小比较)(各种分数,约分,通分,与小数的互化31/50=0.62) 5. 分数的加减(同分母,异分母,运算规律) 3 6. 统计(平均数,中位数。众数)(打电话:2的n次减1) 7. 数学广角(检测问题,最少次数,3的n次,3的(n-1)次减1) 小学数学六年级(上): 1. 位置(坐标)(数形结合) 2. 分数乘法(分数乘整数,分数乘分数(异同分母),约分,倒数知识) 3. 分数除法(分数除整数,分数除分数,比) 4. 圆知识的认识 (周长,面积)(起跑线:2π乘以宽度) 5. 百分数(读写,大小比较,折扣问题、、、) 6. 统计(扇形统计图)、(转化)(合理存款) 7. 数学广角(鸡兔同笼) 小学数学六年级(下) 1. 负数的基本知识 (数轴,简单的大小比较,代表含义) 2. 圆柱与圆锥 (表面积,体积,圆锥表面积:2πL) 3. 比例 (性质) 4. 统计 (各种统计图,复习,要素) 5. 数学广角 (抽屉原理) 【数字与计算】【图形与测量】【统计知识】【方位问题】【式与方程】【生活中的数学(常识)】 【数学逻辑推理思维(由简入繁)】
小学数学知识点汇总(2009-09-14 15:00:22) 小学一年级 九九乘法口诀表。学会基础加减乘。小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。小学,
http://wenku.baidu.com/view/90142e8302d276a200292e2c.html
数学概念整理: 整数部分: 十进制计数法;一(个)、十、百、千、万……都叫做计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。其他数位一个或连续几个0都只读一个“零”。整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。 小数部分: 把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如1/10记作0.1,7/100记作0.07。小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数小数的读法:整数部分整数读,小数点读点,小数部分顺序读。小数的写法:小数点写在个位右下角。小数的性质:小数末尾添0去0大小不变。化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。 分数和百分数 ■分数和百分数的意义1、 分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。2、 百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。3、 百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。4、 成数:几成就是十分之几。■分数的种类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数■分数和除法的关系及分数的基本性质1、 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。■约分和通分1、 分子、分母是互质数的分数,叫做最简分数。2、 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。3、 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。4、 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。5、 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。■倒 数1、 乘积是1的两个数互为倒数。2、 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。3、 1的倒数是1,0没有倒数■分数的大小比较1、 分母相同的分数,分子大的那个分数就大。2、 分子相同的分数,分母小的那个分数就大。3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。■百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。■纳税和利息:税率:应纳税额与各种收入的比率。利率:利息与本金的百分率。由银行规定按年或按月计算。利息的计算公式:利息=本金×利率×时间 百分数与分数的区别主要有以下三点:1.意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。2.应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。3.书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。 数的整除 ■整除的意义 整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。■约数和倍数 1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。■奇数和偶数 1、能被2整除的数叫偶数。例如:0、2、4、6、8、10……注:0也是偶数 2、不能被2整除的数叫基数。例如:1、3、5、7、9…… ■整除的特征 1、能被2整除的数的特征:个位上是0、2、4、6、8。 2、能被5整除的数的特征:个位上是0或5。 3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。■质数和合数 1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。 2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。 3、1既不是质数,也不是合数。 4、自然数按约数的个数可分为:质数、合数 5、自然数按能否被2整除分为:奇数、偶数■分解质因数 1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和2叫做18的质因数。 2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。3、几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。4、特殊情况下几个数的最大公约数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。 ■奇数和偶数的运算性质:1、相邻两个自然数之和是奇数,之积是偶数。2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数, 奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。 整数、小学、分数四则混合运算 ■四则运算的法则 1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加 2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减 3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简 4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数 ■运算定律 加法交换律 a+b=b+a 结合律 (a+b)+c=a+(b+c) 减法性质 a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法交换律 a×b=b×a 结合律 (a×b)×c=a×(b×c) 分配律 (a+b)×c=a×c+b×c 除法性质 a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m) ■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。 推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。 ■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。 ■利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。 如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。 简易方程 ■用字母表示数 用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。 ■用字母表示数的注意事项1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写。数与数相乘,乘号不能省略。2、当1和任何字母相乘时,“ 1” 省略不写。3、数字和字母相乘时,将数字写在字母前面。 ■含有字母的式子及求值求含有字母的式子的值或利用公式求值,应注意书写格式 ■等式与方程表示相等关系的式子叫等式。含有未知数的等式叫方程。判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。 ■方程的解和解方程使方程左右两边相等的未知数的值,叫方程的解。求方程的解的过程叫解方程。 ■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。 ■解方程的方法1、直接运用四则运算中各部分之间的关系去解。如x-8=12加数+加数=和 一个加数=和-另一个加数被减数-减数=差 减数=被减数-差 被减数=差+减数被乘数×乘数=积 一个因数=积÷另一个因数被除数÷除数=商 除数=被除数÷商 被除数=除数×商2、先把含有未知数x的项看作一个数,然后再解。如3x+20=41先把3x看作一个数,然后再解。3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。4、利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。 比和比例 ■比和比例应用题在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。■解题策略按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答■正、反比例应用题的解题策略1、审题,找出题中相关联的两个量2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。3、设未知数,列比例式4、解比例式5、检验,写答语 数感和符号感 ■在数学教学中发展学生的数感主要指,使学生具有应用数字表示具体的数据和数量关系的能力;能够判定不同的算术运算,有能力进行计算,并具有选择适当方法(心算、笔算、使用计算器)实施计算的经验;能根据数据进行推论,并对数据和推论的精确性和可靠性进行检验,等等。■培养学生的数感的目的就在于使学生学会数学地思考,学会用数学的方法理解和解释现实问题。■ 数感的培养有利于学生提出问题和解决问题能力的提高。学生在遇到问题时,自觉主动地与一定的数学知识和技能建立起联系,这样才有可能建构与具体事物相联系 的数学模型。具备一定的数感是完成这类任务的重要条件。如,怎样为参加学校运动会的全体运动员编号?这是一个实际问题,没有固定的解法,你可以用不同的方 式编,而不同的编排方案可能在实用性和便捷性上是不同的。如,从号码上就可以分辨出年级和班级,区分出男生和女生,或很快的知道一名队员是参加哪类项目。 ■ 数概念本身是抽象的,数概念的建立不是一次完成的,学生理解和掌握数的概念要经历一个过程。让学生在认识数的过程中,更多地接触和经历有关的情境和实例, 在现实的背景下感受和体验会使学生更具体更深刻地把握数的概念,建立数感。在认识数的过程中,让学生说一说自己身边的数,生活中用到的数,如何用数表示周 围的事物等,会让学生感觉到数就在自己身边,运用数可以简单明了地表示许多现象。估计一页书的字数,一本书有多少页,一把黄豆有多少粒等,这些对具体数量 的感知与体验,是学生建立数感的基础,这对学生理解数的意义会有很大的帮助。■无论在哪个学段,都应鼓励学生用自己独特的方式表示具体的情境中的数量关系和变化规律,这是发展学生符号感的决定性因素。■引进字母表示,是学习数学符号、学会用符号表示具体情境中隐含的数量关系和变化规律的重要一步。尽可能从实际问题中引入,使学生感受到字母表示的意义。第一,用字母表示运算法则、运算定律以及计算公式。算法的一般化,深化和发展了对数的认识。第二,用字母表示现实世界和各门学科中的各种数量关系。例如,匀速运动中的速度v、时间t和路程s的关系是s=vt。第三,用字母表示数,便于从具体情境中抽象出数量关系和变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题。例如,我们用字母表示实际问题中的未知量,利用问题中的相等关系列出方程。■字母和表达式在不同场合有不同的意义。如:5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值;Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化;(a+b)(a-b)=a-b表示一个一般化的算法,表示一个恒等式;如果a和b分别表示矩形的长和宽,S表示矩形的面积,那么S=ab表示计算矩形面积公式,同时也表示矩形的面积随长和宽的变化而变化。■如何培养学生的符号感要尽可能在实际问题情境中帮助学生理解符号以及表达式、关系式意义,在解决实际问题中发展学生的符号感。必须要对符号运算进行训练,要适当地、分阶段地进行一定数量的符号运算。但是并不主张进行过繁的形式运算训练。学生的符号感的发展不是一朝一夕就可以完成的,而是应该贯穿于数学学习的全过程,伴随着学生数学思维的提高逐步发展。 量的计算 ■事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。■数+单位名称=名数只带有一个单位名称的叫做单名数。带有两个或两个以上单位名称的叫做复名数高级单位的数如把米改成厘米 低级单位的数如把厘米改成米■只带有一个单位名称的数叫做单名数。如:5小时, 3千克 (只有一个单位的)带有两个或两个以上单位名称的叫做复名数。如:5小时6分,3千克500克(有两个单位的)56平方分米=(0.56)平方米 就是单名数转化成单名数560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子.■高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.■常用计算公式表(1)长方形面积=长×宽,计算公式s=a b(2)正方形面积=边长×边长,计算公式s=a × a(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2(4)正方形周长=边长× 4,计算公式s= 4a i(5)平形四边形面积=底×高,计算公式s=a h.(6)三角形面积=底×高÷2,计算公式s=a×h÷2(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2(8)长方体体积=长×宽×高,计算公式v=a bh(9)圆的面积=圆周率×半径平方,计算公式s=лr2(10)正方体体积=棱长×棱长×棱长,计算公式v=a3(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh(12)圆柱的体积=底面积×高,计算公式v=s h ■1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天■闰年年份是4的倍数,整百年份须是400的倍数。■平年一年365天,闰年一年366天。■公元1年—100年是第一世纪,公元1901—2000是第二十世纪。 平面图形的认识和计算 ■三角形1、三角形是由三条线段围成的图形。它具有稳定性。从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。一个三角形有三条高。2、三角形的内角和是180度3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形■四边形1、四边形是由四条线段围成的图形。2、任意四边形的内角和是360度。3、只有一组对边平行的四边形叫梯形。4、两组对边分别平行的四边形叫平行四边形,它容易变形。长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。■圆圆是平面上的一种曲线图形。同圆或等圆的直径都相等,直径等于半径的2倍。圆有无数条对称轴。圆心确定圆的位置,半径确定圆的大小。■扇形 由圆心角的两条半径和它所对的弧围成的图形。扇形是轴对称图形。■轴对称图形1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴。2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等。■周长和面积1、平面图形一周的长度叫做周长。2、平面图形或物体表面的大小叫做面积。 3、常见图形的周长和面积计算公式
小学数学一年级(上): 1. 数一数 2. 比一比(多少,长短,高矮) 3. 1-5的认识与加减法(读写,顺序,大小比较) 4. 认识图形和物体(标准图形的直观认识) 5. 分类 6. 6-10的认识和加减(读写,顺序,大小比较,和小于10) 7. 11-20的认识 (读写,顺序,大小比较) 8. 认识钟表(简单时间的认识) 9. 20以内数字的加(进位加) 小学数学一年级(下): 1. 位置(上下左右) 2. 20以内数字的减(退位减) 3. 图形的拼组(动手,简单图形的简单性质) 4. 100以内数字的认识 (读写,顺序,大小比较) 5. 人民币(各面值人民币的认识,换算,使用) 6. 100以内数字的加减(一) (整十加个位数,估算) 7. 认识时间(读写,换算,简单的加减) 8. 找规律 9. 统计 小学数学二年级(上): 1. 长度单位 (长度单位,测量) 2. 100以内的加减(二) (不进位,进位,不退位,退位。竖式计算,估算) 3. 角的初步认识 (角的构成,直,锐,钝角) 4. 乘法的初步认识(2到6的乘法) 5. 观察物体(视角) 6. 表内乘法(7到9的乘法) 7. 统计(单式条形统计图,简单的分析) 8. 数学广角(极其简单的数学推理) 小学数学二年级(下): 1. 解决问题(复习) 2. 表内除法(一)(2到6的除法) 3. 图形变换(平移,旋转,锐角,钝角,画角) 4. 表内除法(二)(7到9的除法) 5. 万以内数字的认识(读写,顺序,大小比较) 6. 克和千克 (重量单位) 7. 万以内数字的加减法(一) (整百整千的加减,估算) 8. 统计(表格统计图,学会统计) 9. 找规律 小学数学三年级(上): 1. 测量 (各长度,重量单位的认识)(没学角度的测量) 2. 万以内数字的加减法(二) (非整十数之间的加减:进退位、竖式计算,估算) 3. 四边形 (平行四边形,长方形、正方形周长) 4. 有余数的除法 (整除后、、、) 5. 时、分、秒(换算,时间概念) 6. 多位数乘以一位数(表内乘法后、、、估算) 7. 分数的初步认识(读写,大小比较) 8. 可能性 9. 数学广角(排序问题,人民币购物问题) 小学数学三年级(下): 1. 位置与方向(大致方位) 2. 除数是一位数的除法(较大数除小数) 3. 统计 (单式条形统计图,平均数) 4. 年、月、日 (关系,闰年,月份天数,24小时制) 5. 两位数之间的乘法(较大数乘较大数,估算) 6. 面积(长方形,正方形,单位) 7. 小数的初步认识(读写,顺序,大小比较) 8. 解决问题(复习) 9. 数学广角(集合问题?) 小学数学四年级(上) 1. 大数的认识 (读写,顺序,大小比较) 2. 角度的测量 (读写,量角器,其他角) 3. 三位数乘以两位数(、、、、估算) 4. 平行四边形和梯形(垂直,平行,点线距离,定义,画法,底边,高) 5. 除数是两位数的除法(较大数除较大数) 6. 统计(复式条形统计按图) 7. 数学广角(时间分配问题) 小学数学四年级(下): 1. 四则运算 (加减乘除,运算顺序) 2. 位置与方向 (具体方位,地点) 3. 运算规律与简便计算 (计算捷径) 4. 小数的意义和性质(读写,大小比较,性质,小数点,近似值) 5. 三角形(认识,稳定性,边关系,特殊三角形,内角和) 6. 小数的加减法(小数点对齐,运算规律) 7. 统计(单式折线统计图) 8. 数学广角(植树问题) 小学数学五年级(上): 1. 小数乘法(小数乘整数,小数乘小数,近似值) 2. 小数除法(小数除整数,整数除小数)(近似值) 3. 观察物体(视角,判断) 4. 简易方程(字母代 表数,读写,代数式,含未知数的等式,解方程,应用) 5. 多边形的面积 (平行四边形,三角形,梯形) 6. 统计和可能性 (概率,中位数,公平性) 7. 数学广角 (数字在实际生活中代表的含义----身份证) 小学数学五年级(下): 1. 图形的变换 (轴对称,中心对称,旋转角度的重合问题) 2. 因数与倍数(2,3,5倍数,最大公因数、最小公倍数,分解质因数,解答问题) 3. 长方体和正方体(表面积,体积,其他性质) 4. 分数的意义和性质 (读写,大小比较)(各种分数,约分,通分,与小数的互化31/50=0.62) 5. 分数的加减(同分母,异分母,运算规律) 3 6. 统计(平均数,中位数。众数)(打电话:2的n次减1) 7. 数学广角(检测问题,最少次数,3的n次,3的(n-1)次减1) 小学数学六年级(上): 1. 位置(坐标)(数形结合) 2. 分数乘法(分数乘整数,分数乘分数(异同分母),约分,倒数知识) 3. 分数除法(分数除整数,分数除分数,比) 4. 圆知识的认识 (周长,面积)(起跑线:2π乘以宽度) 5. 百分数(读写,大小比较,折扣问题、、、) 6. 统计(扇形统计图)、(转化)(合理存款) 7. 数学广角(鸡兔同笼) 小学数学六年级(下) 1. 负数的基本知识 (数轴,简单的大小比较,代表含义) 2. 圆柱与圆锥 (表面积,体积,圆锥表面积:2πL) 3. 比例 (性质) 4. 统计 (各种统计图,复习,要素) 5. 数学广角 (抽屉原理) 【数字与计算】【图形与测量】【统计知识】【方位问题】【式与方程】【生活中的数学(常识)】 【数学逻辑推理思维(由简入繁)】
小学数学知识点汇总(2009-09-14 15:00:22) 小学一年级 九九乘法口诀表。学会基础加减乘。小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。小学,
http://wenku.baidu.com/view/90142e8302d276a200292e2c.html
数学概念整理: 整数部分: 十进制计数法;一(个)、十、百、千、万……都叫做计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。其他数位一个或连续几个0都只读一个“零”。整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。 小数部分: 把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如1/10记作0.1,7/100记作0.07。小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数小数的读法:整数部分整数读,小数点读点,小数部分顺序读。小数的写法:小数点写在个位右下角。小数的性质:小数末尾添0去0大小不变。化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。 分数和百分数 ■分数和百分数的意义1、 分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。2、 百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。3、 百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。4、 成数:几成就是十分之几。■分数的种类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数■分数和除法的关系及分数的基本性质1、 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。■约分和通分1、 分子、分母是互质数的分数,叫做最简分数。2、 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。3、 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。4、 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。5、 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。■倒 数1、 乘积是1的两个数互为倒数。2、 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。3、 1的倒数是1,0没有倒数■分数的大小比较1、 分母相同的分数,分子大的那个分数就大。2、 分子相同的分数,分母小的那个分数就大。3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。■百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。■纳税和利息:税率:应纳税额与各种收入的比率。利率:利息与本金的百分率。由银行规定按年或按月计算。利息的计算公式:利息=本金×利率×时间 百分数与分数的区别主要有以下三点:1.意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕 米等。2.应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。3.书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。 数的整除 ■整除的意义 整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。■约数和倍数 1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。■奇数和偶数 1、能被2整除的数叫偶数。例如:0、2、4、6、8、10……注:0也是偶数 2、不能被2整除的数叫基数。例如:1、3、5、7、9…… ■整除的特征 1、能被2整除的数的特征:个位上是0、2、4、6、8。 2、能被5整除的数的特征:个位上是0或5。 3、能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。■质数和合数 1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。 2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。 3、1既不是质数,也不是合数。 4、自然数按约数的个数可分为:质数、合数 5、自然数按能否被2整除分为:奇数、偶数■分解质因数 1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和2叫做18的质因数。 2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。3、几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。4、特殊情况下几个数的最大公约数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。 ■奇数和偶数的运算性质:1、相邻两个自然数之和是奇数,之积是偶数。2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数, 奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数×奇数=奇数,奇数×偶数=偶数,偶数×偶数=偶数。 整数、小学、分数四则混合运算 ■四则运算的法则 1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加 2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减 3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简 4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数 ■运算定律 加法交换律 a+b=b+a 结合律 (a+b)+c=a+(b+c) 减法性质 a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法交换律 a×b=b×a 结合律 (a×b)×c=a×(b×c) 分配律 (a+b)×c=a×c+b×c 除法性质 a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m) ■积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。 推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。 ■商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。 ■利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。 如:8500÷200= 可以把被除数、除数同时缩小100倍来除,即85÷2= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。 简易方程 ■用字母表示数 用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。 ■用字母表示数的注意事项1、数字与字母、字母和字母相乘时,乘号可以简写成“•“或省略不写。数与数相乘,乘号不能省略。2、当1和任何字母相乘时,“ 1” 省略不写。3、数字和字母相乘时,将数字写在字母前面。 ■含有字母的式子及求值求含有字母的式子的值或利用公式求值,应注意书写格式 ■等式与方程表示相等关系的式子叫等式。含有未知数的等式叫方程。判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。 ■方程的解和解方程使方程左右两边相等的未知数的值,叫方程的解。求方程的解的过程叫解方程。 ■在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。 ■解方程的方法1、直接运用四则运算中各部分之间的关系去解。如x-8=12加数+加数=和 一个加数=和-另一个加数被减数-减数=差 减数=被减数-差 被减数=差+减数被乘数×乘数=积 一个因数=积÷另一个因数被除数÷除数=商 除数=被除数÷商 被除数=除数×商2、先把含有未知数x的项看作一个数,然后再解。如3x+20=41先把3x看作一个数,然后再解。3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2,要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。4、利用运算定律或性质,使方程变形,然后再解。如:2.2x+7.8x=20先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。 比和比例 ■比和比例应用题在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。■解题策略按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答■正、反比例应用题的解题策略1、审题,找出题中相关联的两个量2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。3、设未知数,列比例式4、解比例式5、检验,写答语 数感和符号感 ■在数学教学中发展学生的数感主要指,使学生具有应用数字表示具体的数据和数量关系的能力;能够判定不同的算术运算,有能力进行计算,并具有选择适当方法(心算、笔算、使用计算器)实施计算的经验;能根据数据进行推论,并对数据和推论的精确性和可靠性进行检验,等等。■培养学生的数感的目的就在于使学生学会数学地思考,学会用数学的方法理解和解释现实问题。■ 数感的培养有利于学生提出问题和解决问题能力的提高。学生在遇到问题时,自觉主动地与一定的数学知识和技能建立起联系,这样才有可能建构与具体事物相联系 的数学模型。具备一定的数感是完成这类任务的重要条件。如,怎样为参加学校运动会的全体运动员编号?这是一个实际问题,没有固定的解法,你可以用不同的方 式编,而不同的编排方案可能在实用性和便捷性上是不同的。如,从号码上就可以分辨出年级和班级,区分出男生和女生,或很快的知道一名队员是参加哪类项目。 ■ 数概念本身是抽象的,数概念的建立不是一次完成的,学生理解和掌握数的概念要经历一个过程。让学生在认识数的过程中,更多地接触和经历有关的情境和实例, 在现实的背景下感受和体验会使学生更具体更深刻地把握数的概念,建立数感。在认识数的过程中,让学生说一说自己身边的数,生活中用到的数,如何用数表示周 围的事物等,会让学生感觉到数就在自己身边,运用数可以简单明了地表示许多现象。估计一页书的字数,一本书有多少页,一把黄豆有多少粒等,这些对具体数量 的感知与体验,是学生建立数感的基础,这对学生理解数的意义会有很大的帮助。■无论在哪个学段,都应鼓励学生用自己独特的方式表示具体的情境中的数量关系和变化规律,这是发展学生符号感的决定性因素。■引进字母表示,是学习数学符号、学会用符号表示具体情境中隐含的数量关系和变化规律的重要一步。尽可能从实际问题中引入,使学生感受到字母表示的意义。第一,用字母表示运算法则、运算定律以及计算公式。算法的一般化,深化和发展了对数的认识。第二,用字母表示现实世界和各门学科中的各种数量关系。例如,匀速运动中的速度v、时间t和路程s的关系是s=vt。第三,用字母表示数,便于从具体情境中抽象出数量关系和变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题。例如,我们用字母表示实际问题中的未知量,利用问题中的相等关系列出方程。■字母和表达式在不同场合有不同的意义。如:5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值;Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化;(a+b)(a-b)=a-b表示一个一般化的算法,表示一个恒等式;如果a和b分别表示矩形的长和宽,S表示矩形的面积,那么S=ab表示计算矩形面积公式,同时也表示矩形的面积随长和宽的变化而变化。■如何培养学生的符号感要尽可能在实际问题情境中帮助学生理解符号以及表达式、关系式意义,在解决实际问题中发展学生的符号感。必须要对符号运算进行训练,要适当地、分阶段地进行一定数量的符号运算。但是并不主张进行过繁的形式运算训练。学生的符号感的发展不是一朝一夕就可以完成的,而是应该贯穿于数学学习的全过程,伴随着学生数学思维的提高逐步发展。 量的计算 ■事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。■数+单位名称=名数只带有一个单位名称的叫做单名数。带有两个或两个以上单位名称的叫做复名数高级单位的数如把米改成厘米 低级单位的数如把厘米改成米■只带有一个单位名称的数叫做单名数。如:5小时, 3千克 (只有一个单位的)带有两个或两个以上单位名称的叫做复名数。如:5小时6分,3千克500克(有两个单位的)56平方分米=(0.56)平方米 就是单名数转化成单名数560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子.■高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位.■常用计算公式表(1)长方形面积=长×宽,计算公式s=a b(2)正方形面积=边长×边长,计算公式s=a × a(3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2(4)正方形周长=边长× 4,计算公式s= 4a i(5)平形四边形面积=底×高,计算公式s=a h.(6)三角形面积=底×高÷2,计算公式s=a×h÷2(7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2(8)长方体体积=长×宽×高,计算公式v=a bh(9)圆的面积=圆周率×半径平方,计算公式s=лr2(10)正方体体积=棱长×棱长×棱长,计算公式v=a3(11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh(12)圆柱的体积=底面积×高,计算公式v=s h ■1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天■闰年年份是4的倍数,整百年份须是400的倍数。■平年一年365天,闰年一年366天。■公元1年—100年是第一世纪,公元1901—2000是第二十世纪。 平面图形的认识和计算 ■三角形1、三角形是由三条线段围成的图形。它具有稳定性。从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。一个三角形有三条高。2、三角形的内角和是180度3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形■四边形1、四边形是由四条线段围成的图形。2、任意四边形的内角和是360度。3、只有一组对边平行的四边形叫梯形。4、两组对边分别平行的四边形叫平行四边形,它容易变形。长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。■圆圆是平面上的一种曲线图形。同圆或等圆的直径都相等,直径等于半径的2倍。圆有无数条对称轴。圆心确定圆的位置,半径确定圆的大小。■扇形 由圆心角的两条半径和它所对的弧围成的图形。扇形是轴对称图形。■轴对称图形1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴。2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等。■周长和面积1、平面图形一周的长度叫做周长。2、平面图形或物体表面的大小叫做面积。 3、常见图形的周长和面积计算公式

小学五年级数学学习重点有哪些?
数学作为一门具有很强逻辑性和连续性的学科,是每个小学生都应该掌握的基础知识.小学数学重点是基础知识的掌握基和学习,学习数学的标准就是能够对该学籍范围内的题目进行正确的解答.考察公式概念是小学数学重点要掌握的知识,下面这几个学习方法带你学好数学.  (知识反应) 1.稳抓课堂,理科的学习重要的是平时的积累,不适合进行突击复习.做到在每一节课上都能认真的听讲,紧跟老师讲课的思路,将每一节需要记住的概念、公式了如指掌,万万不能让一个题目限制了思维. 2.完成作业质量要高,在写作业的时对于同一类的题目就要有意识的去考量准确率和速度,并且在完成时候对此类题目进行总结,掌握其中的规律.所谓的做题不单单只是将题作对,是要在最对的基础之上进行方法和技巧的总结.对于老师留置的作业要认真准确的完成,面对较难的题目,多利用空闲的时间进行思考,你会发现灵感的存在. 3.勤思多问,对于课本上的定理,规律不懂的知识点要尽早解决,尽早提问.学习学问要做到盘根问底,用怀疑的态度去学习理科才是正确的方式.当天的问题不要放在次日解决,扫除学习中的隐患是学习的最佳途径. 4.总结比较,首先是知识点的总结比较.每学完一章都要在心中又一个轮廓,整理出其中的内容.将容易混淆的知识点进行比较,必要时可以进行联想和分析.其次是题目,每个学生都需要建立自己的题库,一个是错题的一个是精题的.这样对于考试或者是作业中的题目是不是就能做一个总结呢?通过题库来总结其中的规律,这些就是你最为宝贵的财富,对于你的学习之路有很大的帮助. 5.课外练习要有选择性,课余的时间对于学生来说是宝贵的,在课外进行的数学习题应该是求精,日久天长的积累会使你的思路开阔发达,而盲目的做很多的习题有时候很浪费时间.  (同学们开讲) 学习小学数学重点就是注重学习的方法,但是也需要学生有坚持不懈的精神.勤学多问不耻下问是学习的良好态度,他们会把你带到一个更高的层次,掌握好学习方法,你会对每一天的新知识充满兴趣.
其中,小数的乘法和除法是为了让在学生再掌握了整数的加减乘除运算、小数的性质以及小数加法、减法的基础上进行的运算,目的是培养学生小数的乘除法运算能力。简单方程中的难点有:用字母表示数字、等式有哪些性质、解简易方程、用简易方程表示相等关系,从而解决一些实际数学问题等内容,最终目的是为了发展学生的思维能力,提高解决实际问题的能力。学生在学习过程中要抓住这些重点,多加练习,达到触类旁通的效果。 在几何图形这类题上,本年级安排了多边形的面积、周长计算两个单元。着重让学生认识各种图形的特征、图形之间关系以及图形之间的相互转化,掌握四边形、三角形、面积公式,在解决这些题目时,通常会用到平移、旋转等方法。统计与概率也是小学五年级数学学习重点之一,在统计与概率方面,小学五年级着重让学生学习有关可能性的知识,即不可能事件、可能事件等。在教学中,老师重点通过实验向学生证明事件的可能性,让学生学会处理一些事件发生的可能性。 综上所述,要清楚小学五年级数学学习重点,首先得全面了解小学五年级数学教材中具体包括哪些方面的内容,然后结合老师课堂讲授的重点,判断哪些内容是本年级学习的重点。然后通过多做练习,总结同类题型的规律,做到触类旁通。不要忽视的是,数学学习中同样需要记忆,比如公式,但是这种记忆需要结合具体题型,而不是死记硬背。
其中,小数的乘法和除法是为了让在学生再掌握了整数的加减乘除运算、小数的性质以及小数加法、减法的基础上进行的运算,目的是培养学生小数的乘除法运算能力。简单方程中的难点有:用字母表示数字、等式有哪些性质、解简易方程、用简易方程表示相等关系,从而解决一些实际数学问题等内容,最终目的是为了发展学生的思维能力,提高解决实际问题的能力。学生在学习过程中要抓住这些重点,多加练习,达到触类旁通的效果。 在几何图形这类题上,本年级安排了多边形的面积、周长计算两个单元。着重让学生认识各种图形的特征、图形之间关系以及图形之间的相互转化,掌握四边形、三角形、面积公式,在解决这些题目时,通常会用到平移、旋转等方法。统计与概率也是小学五年级数学学习重点之一,在统计与概率方面,小学五年级着重让学生学习有关可能性的知识,即不可能事件、可能事件等。在教学中,老师重点通过实验向学生证明事件的可能性,让学生学会处理一些事件发生的可能性。 综上所述,要清楚小学五年级数学学习重点,首先得全面了解小学五年级数学教材中具体包括哪些方面的内容,然后结合老师课堂讲授的重点,判断哪些内容是本年级学习的重点。然后通过多做练习,总结同类题型的规律,做到触类旁通。不要忽视的是,数学学习中同样需要记忆,比如公式,但是这种记忆需要结合具体题型,而不是死记硬背。

五年级数学位置知识点总结是什么?
如下: 1,横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。 2,用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。 3,用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。  4,写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。 5,数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。 6,一组数对只能表示一个位置。 7,表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。
如下: 1,横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。 2,用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。 3,用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。 4,写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。 5,数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。 6,一组数对只能表示一个位置。 7,表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。
如下: 1,横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。 2,用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。 3,用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。 4,写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。 5,数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。 6,一组数对只能表示一个位置。 7,表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

人教版小学数学五年级上册知识点有哪些?
人教版小学数字五年级上册知识点我们已收集整理成集,请查收。希望有所帮助。 《小学阶段语文、英语、数字、音乐、美术、体育、自然、科学等》百度网盘资源大全 链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ ?pwd=1234 提取码:1234 对于小学阶段所涉及到的各科各类资料,我拍改们都收集、归类并定期更新。欢迎有需求的家长、老师收藏。 
小学五年级数学上册复习教学知识点归纳总结 第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.如:1.5×0.8就是求1.5的十分之八是多少.1.5×1.8就是求1.5的1.8倍是多少.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小.4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.6、(P11)小数四则运算顺序跟整数是一样的.7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.注意:如果被除数的位数不够,在被除数的末尾用0补足.11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.第三单元观察物体15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.第四单元简易方程16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.加号、减号除号以及数与数之间的乘号不能省略.17、a×a可以写作a•a或a ,a 读作a的平方.2a表示a+a18、方程:含有未知数的等式称为方程.使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫做解方程.19、解方程原理:天平平衡.等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.20、10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数 被减数=差+减数减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数 除数=被除数÷商21、所有的方程都是等式,但等式不一定都是等式.22、方程的检验过程:方程左边=……23、方程的解是一个数;解方程式一个计算过程.=方程右边所以,X=…是方程的解.第五单元多边形的面积23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2面积=长×宽字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a面积=边长×边长字母公式:S=a平行四边形的面积=底×高字母公式: S=ah三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母公式: S=ah÷2梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】24、平行四边形面积公式推导:剪拼、平移25、三角形面积公式推导:旋转平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高.因为平行四边形面积=底×高,所以三角形面积=底×高÷226、梯形面积公式推导:旋转27、三角形、梯形的第二种推导方法老师已讲,自己看书两个完全一样的梯形可以拼成一个平行四边形,知道就行.平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷228、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍.29、长方形框架拉成平行四边形,周长不变,面积变小.30、组合图形:转化成已学的简单图形,通过加、减进行计算.第六单元统计与可能性31、平均数=总数量÷总份数32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.第七单元数学广角33、数不仅可以用来表示数量和顺序,还可以用来编码.34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)054001前3位表示邮区前4位表示县(市)最后2位表示投递局 35、身份证码: 18位1 30 52 11 9 7 8 0 3 0 1 0 0 19河北省邢台市 邢台县 出生日期顺序码校验码 倒数第二位的数字用来表示性别,单数表示男,双数表示女.
小学五年级数学上册复习教学知识点归纳总结 第一单元小数乘法1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算.如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少.如:1.5×0.8就是求1.5的十分之八是多少.1.5×1.8就是求1.5的1.8倍是多少.计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点.注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位.3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小.4、求近似数的方法一般有三种:(P10)⑴四舍五入法;⑵进一法;⑶去尾法5、计算钱数,保留两位小数,表示计算到分.保留一位小数,表示计算到角.6、(P11)小数四则运算顺序跟整数是一样的.7、运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算.如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算.9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除.,商的小数点要和被除数的小数点对齐.整数部分不够除,商0,点上小数点.如果有余数,要添0再除.10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算.注意:如果被除数的位数不够,在被除数的末尾用0补足.11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数.12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变.②除数不变,被除数扩大,商随着扩大.③被除数不变,除数缩小,商扩大.13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数.循环节:一个循环小数的小数部分,依次不断重复出现的数字.如6.3232……的循环节是32.14、小数部分的位数是有限的小数,叫做有限小数.小数部分的位数是无限的小数,叫做无限小数.第三单元观察物体15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面.第四单元简易方程16、(P45)在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写.加号、减号除号以及数与数之间的乘号不能省略.17、a×a可以写作a•a或a ,a 读作a的平方.2a表示a+a18、方程:含有未知数的等式称为方程.使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫做解方程.19、解方程原理:天平平衡.等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立.20、10个数量关系式:加法:和=加数+加数一个加数=和-两一个加数减法:差=被减数-减数 被减数=差+减数减数=被减数-差乘法:积=因数×因数 一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数 除数=被除数÷商21、所有的方程都是等式,但等式不一定都是等式.22、方程的检验过程:方程左边=……23、方程的解是一个数;解方程式一个计算过程.=方程右边所以,X=…是方程的解.第五单元多边形的面积23、公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】 字母公式:C=(a+b)×2面积=长×宽字母公式:S=ab正方形:周长=边长×4 字母公式:C=4a面积=边长×边长字母公式:S=a平行四边形的面积=底×高字母公式: S=ah三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母公式: S=ah÷2梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】24、平行四边形面积公式推导:剪拼、平移25、三角形面积公式推导:旋转平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,因为长方形面积=长×宽,所以平行四边形面积=底×高.因为平行四边形面积=底×高,所以三角形面积=底×高÷226、梯形面积公式推导:旋转27、三角形、梯形的第二种推导方法老师已讲,自己看书两个完全一样的梯形可以拼成一个平行四边形,知道就行.平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷228、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的2倍.29、长方形框架拉成平行四边形,周长不变,面积变小.30、组合图形:转化成已学的简单图形,通过加、减进行计算.第六单元统计与可能性31、平均数=总数量÷总份数32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适.第七单元数学广角33、数不仅可以用来表示数量和顺序,还可以用来编码.34、邮政编码:由6位组成,前2位表示省(直辖市、自治区)054001前3位表示邮区前4位表示县(市)最后2位表示投递局 35、身份证码: 18位1 30 52 11 9 7 8 0 3 0 1 0 0 19河北省邢台市 邢台县 出生日期顺序码校验码 倒数第二位的数字用来表示性别,单数表示男,双数表示女.

