说说大全
心情说说 伤感说说 爱情说说 搞笑说说 个性说说 经典说说 过春节说说 国庆节说说 结婚的说说 劳动节说说 母亲节说说 下雨的说说 中秋节说说 清明节说说 励志说说 圣诞节说说 端午节说说 父亲节说说 过小年说说 腊八节说说 生日的说说 青年节说说 重阳节说说 妇女节说说 元旦节说说 情人节说说 植树节说说 愚人节说说 教师节说说 儿童节说说
放假安排
春节放假表 元旦节放假 清明节放假 劳动节放假 国庆节放假 中秋节放假 端午节放假 父亲节放假 母亲节放假 青年节放假 儿童节放假 妇女节放假 圣诞节放假 情人节放假 重阳节放假 愚人节放假 建军节放假 建党节放假 教师节放假 植树节放假 寒假放假 暑假放假 高速免费 放假游玩 加班工资 放假通知
节日祝福
端午节祝福 中秋节祝福 国庆节祝福 劳动节祝福 元旦节祝福 母亲节祝福 情人节祝福 感恩节祝福 圣诞节祝福 建军节祝福 儿童节祝福 父亲节祝福 新年祝福语 元宵节祝福 妇女节祝福 愚人节祝福 平安夜祝福 除夕夜祝福 教师节祝福 结婚祝福语 建党节祝福 护士节祝福 青年节祝福 植树节祝福 腊八节祝福 生日祝福语 乔迁祝福语 开业祝福语 考试祝福语 周末祝福语
句子大全
唯美的句子 好词和好句 骂人的句子 经典的句子 正能量句子 励志的句子 表白的句子 爱情的句子 幸福的句子 伤感的句子 失望的句子 抒情的句子 心酸的句子 心烦的句子 现实的句子 无奈的句子 回忆的句子 想家的句子 暗恋的句子 感人的句子
作文素材
小学作文 初中作文 高中作文 中考作文 高考作文 话题作文 陈述句 比喻句 拟人句 设问句 疑问句 夸张句 排比句 反问句 近义词 反义词 同义词 褒义词 贬义词 绕口令 歇后语 十万个为什么
职称考试
初级会计师 房产经纪人资格证 电气工程师 执业中药师 中西医执业医师 执业药师资格 成人高考专升本 法律职业资格 教师资格证 高级经济师 中级经济师 初级经济师 注册会计师 中级会计师 一级建造师 证券从业资格 期货从业资格 银行从业资格 基金从业资格 自学考试 二级造价工程师 护士资格证 监理工程师 安全工程师 二级建造师 一级造价工程师 一级消防工程师
范文大全
工作总结 毕业赠言 岗位职责 入党志愿 调研报告 活动策划 评语寄语 规章制度 入职培训 入党申请书 入团申请书 工作计划 合同范本 心得体会 思想汇报 活动总结 实习报告 毕业论文 转正申请 辞职报告 员工手册 行政公文 自我鉴定 自我介绍 检讨书 导游词 演讲稿 道歉信 慰问信 表扬信 辞职信 感谢信 介绍信 演讲口才 保证书 请假条 主持词 证明书 担保书 讲话稿
口号标语
节日习俗
端午节习俗 腊八节习俗 国庆节习俗 中秋节习俗 七夕节习俗 清明节习俗 寒食节习俗 元宵节习俗 春节的习俗 重阳节习俗 情人节由来 平安夜由来 龙头节由来 元旦节由来 圣诞节由来 下元节由来 寒衣节由来 感恩节由来 教师节由来 中元节由来 建军节由来 建党节由来 儿童节由来 母亲节由来 护士节由来 青年节由来 劳动节由来 愚人节由来 植树节由来 妇女节由来
网名大全
微信网名 情侣网名 游戏网名 男生网名 女生网名 搞笑网名 励志网名 快手网名 抖音网名 英文网名 一字网名 二字网名 三字网名 四字网名 五字网名 六字网名 七字网名 古风网名 微博网名 伤感网名
签名大全
伤感签名 微信签名 情侣签名 励志签名 英文签名 搞笑签名 暗恋签名 节日签名 分手签名 生日签名 经典签名 游戏签名 快手签名 抖音签名 霸气签名 古风签名 唯美签名 幸福签名 女生签名 男生签名
十二星座
白羊座 金牛座 双子座 巨蟹座 狮子座 处女座 天秤座 天蝎座 射手座 摩羯座 水瓶座 双鱼座
节气知识
霜降节气 谷雨节气 清明节气 春风节气 雨水节气 立春节气 夏至节气 小满节气 芒种节气 立夏节气 惊蛰节气 小暑节气 秋分节气 寒露节气 立冬节气 小雪节气 大雪节气 小寒节气 冬至节气 大寒节气 大暑节气 立秋节气 处暑节气 白露节气
经典台词
十二生肖
鼠的生肖 羊的生肖 牛的生肖 虎的生肖 兔的生肖 龙的生肖 蛇的生肖 马的生肖 猴的生肖 鸡的生肖 狗的生肖 猪的生肖
心语大全
对联大全
成语大全
古诗词句
经典语录

初二数学上册课本内容(初二数学上册课本内容及答案)

发表时间:2023-07-13 热度:

初二数学上册书知识点总结

学习八年级数学知识点的时间不多。学习会使你获得许多你成长所必需的“能源”,以下是我为大家整理的初二数学上册书知识点总结,希望你们喜欢。 初二数学上册书知识点总结1-40 1 全等三角形的对应边、对应角相等 ¬ 2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 ¬ 3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 ¬ 4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 ¬ 5 边边边公理(SSS) 有三边对应相等的两个三角形全等 ¬ 6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 ¬ 7 定理1 在角的平分线上的点到这个角的两边的距离相等 ¬ 8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 ¬ 9 角的平分线是到角的两边距离相等的所有点的集合 ¬ 10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) ¬ 21 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 ¬ 22 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 ¬ 23 推论3 等边三角形的各角都相等,并且每一个角都等于60° ¬ 24 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) ¬ 25 推论1 三个角都相等的三角形是等边三角形 ¬ 26 推论 2 有一个角等于60°的等腰三角形是等边三角形 ¬ 27 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 ¬ 28 直角三角形斜边上的中线等于斜边上的一半 ¬ 29 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 ¬ 30 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 ¬ 31 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 ¬ 32 定理1 关于某条直线对称的两个图形是全等形 ¬ 33 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 ¬ 34定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 ¬ 35逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 ¬ 36勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 ¬ 37勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形 ¬ 38定理 四边形的内角和等于360° ¬ 39四边形的外角和等于360° ¬ 40多边形内角和定理 n边形的内角的和等于(n-2)×180° ¬ 初二数学上册书知识点总结41-80 41推论 任意多边的外角和等于360° ¬ 42平行四边形性质定理1 平行四边形的对角相等 ¬ 43平行四边形性质定理2 平行四边形的对边相等 ¬ 44推论 夹在两条平行线间的平行线段相等 ¬ 45平行四边形性质定理3 平行四边形的对角线互相平分 ¬ 46平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 ¬ 47平行四边形判定定理2 两组对边分别相等的四边形是平行四边形 ¬ 48平行四边形判定定理3 对角线互相平分的四边形是平行四边形 ¬ 49平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 ¬ 50矩形性质定理1 矩形的四个角都是直角 ¬ 51矩形性质定理2 矩形的对角线相等 ¬ 52矩形判定定理1 有三个角是直角的四边形是矩形 ¬ 53矩形判定定理2 对角线相等的平行四边形是矩形 ¬ 54菱形性质定理1 菱形的四条边都相等 ¬ 55菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 ¬ 56菱形面积=对角线乘积的一半,即S=(a×b)÷2 ¬ 57菱形判定定理1 四边都相等的四边形是菱形 ¬ 58菱形判定定理2 对角线互相垂直的平行四边形是菱形 ¬ 59正方形性质定理1 正方形的四个角都是直角,四条边都相等 ¬ 60正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 ¬ 61定理1 关于中心对称的两个图形是全等的 ¬ 62定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 ¬ 63逆定理 如果两个图形的对应点连线都经过某一点,并且被这一 ¬ 点平分,那么这两个图形关于这一点对称 ¬ 64等腰梯形性质定理 等腰梯形在同一底上的两个角相等 ¬ 65等腰梯形的两条对角线相等 ¬ 66等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 ¬ 67对角线相等的梯形是等腰梯形 ¬ 68平行线等分线段定理 如果一组平行线在一条直线上截得的线段 ¬ 相等,那么在其他直线上截得的线段也相等 ¬ 69 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 ¬ 70 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 ¬ 三边 ¬ 71 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 ¬ 的一半 ¬ 72 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 ¬ 一半 L=(a+b)÷2 S=L×h ¬ 73 (1)比例的基本性质 如果a:b=c:d,那么ad=bc ¬ 如果ad=bc,那么a:b=c:d ¬ 74 (2)合比性质 如果a/b=c/d,那么(a±b)/b=(c±d)/d ¬ 75 (3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 ¬ (a+c+…+m)/(b+d+…+n)=a/b ¬ 76 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 ¬ 线段成比例 ¬ 77 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例 ¬ 78 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 ¬ 79 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例 ¬ 80 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 ¬ 初二数学上册书知识点总结81-136 81 相似三角形判定定理1 两角对应相等,两三角形相似(ASA) ¬ 82 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 ¬ 83 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS) ¬ 84 判定定理3 三边对应成比例,两三角形相似(SSS) ¬ 85 定理 如果一个直角三角形的斜边和一条直角边与另一个直角三 ¬ 角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 ¬ 86 性质定理1 相似三角形对应高的比,对应中线的比与对应角平 ¬ 分线的比都等于相似比 ¬ 87 性质定理2 相似三角形周长的比等于相似比 ¬ 88 性质定理3 相似三角形面积的比等于相似比的平方 ¬ 89 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等 ¬ 于它的余角的正弦值 ¬ 90任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等 ¬ 于它的余角的正切值 ¬ 91圆是定点的距离等于定长的点的集合 ¬ 92圆的内部可以看作是圆心的距离小于半径的点的集合 ¬ 93圆的外部可以看作是圆心的距离大于半径的点的集合 ¬ 94同圆或等圆的半径相等 ¬ 95到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半 ¬ 径的圆 ¬ 96和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直 ¬ 平分线 ¬ 97到已知角的两边距离相等的点的轨迹,是这个角的平分线 ¬ 98到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距 ¬ 离相等的一条直线 ¬ 99定理 不在同一直线上的三点确定一个圆. ¬ 100垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 ¬ 101推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 ¬ ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧 ¬ ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 ¬ 102推论2 圆的两条平行弦所夹的弧相等 ¬ 103圆是以圆心为对称中心的中心对称图形 ¬ 104定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 ¬ 相等,所对的弦的弦心距相等 ¬ 105推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 ¬ 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等 ¬ 106定理 一条弧所对的圆周角等于它所对的圆心角的一半 ¬ 107推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 ¬ 108推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 ¬ 对的弦是直径 ¬ 109推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 ¬ 110定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 ¬ 的内对角 ¬ 111①直线L和⊙O相交 d ②直线L和⊙O相切 d=r ¬ ③直线L和⊙O相离 d>r ¬ 112切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线 ¬ 113切线的性质定理 圆的切线垂直于经过切点的半径 ¬ 114推论1 经过圆心且垂直于切线的直线必经过切点 ¬ 115推论2 经过切点且垂直于切线的直线必经过圆心 ¬ 116切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, ¬ 圆心和这一点的连线平分两条切线的夹角 ¬ 117圆的外切四边形的两组对边的和相等 ¬ 118弦切角定理 弦切角等于它所夹的弧对的圆周角 ¬ 119推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 ¬ 120相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积 ¬ 相等 ¬ 121推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的 ¬ 两条线段的比例中项 ¬ 122切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割 ¬ 线与圆交点的两条线段长的比例中项 ¬ 123推论 从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等 ¬ 124如果两个圆相切,那么切点一定在连心线上 ¬ 125①两圆外离 d>R+r ②两圆外切 d=R+r ¬ ③两圆相交 R-rr) ⑤两圆内含d r) ¬ 126定理 相交两圆的连心线垂直平分两圆的公共弦 ¬ 127定理 把圆分成n(n≥3): ¬ ⑴依次连结各分点所得的多边形是这个圆的内接正n边形 ¬ ⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形 ¬ 128定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆 ¬ 129正n边形的每个内角都等于(n-2)×180°/n ¬ 130定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 ¬ 131正n边形的面积Sn=pnrn/2 p表示正n边形的周长 ¬ 132正三角形面积√3a/4 a表示边长 ¬ 133如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 ¬ 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4 ¬ 134弧长计算公式:L=n兀R/180 ¬ 135扇形面积公式:S扇形=n兀R^2/360=LR/2 ¬ 136内公切线长= d-(R-r) 外公切线长= d-(R+r)¬
初二数学上册书知识点总结

八年级数学课本知识点

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。 八年级上册数学知识点总结归纳 一、全等形 1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。 2、一个图形经过翻折、平移和旋转等变换后所得到的图形一定与原图形全等。反之,两个全等的图形经过上述变换后一定能够互相重合。 二、全等多边形 1、定义:能够完全重合的多边形叫做全等多边形。互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。 2、性质: (1)全等多边形的对应边相等,对应角相等。 (2)全等多边形的面积相等。 三、全等三角形 1、全等符号:≌。如图,不是为:△ABC≌△ABC。读作:三角形ABC全等于三角形ABC。 2、全等三角形的判定定理: (1)有两边和它们的夹角对应相等的两三角形全等。(即SAS,边角边); (2)有两角和它们的夹边对应相等的两三角形全等。(即ASA,角边角) (3)有两角和其中一角的对边对应相等的两三角形全等。(即AAS,角角边) (4)有三边对应相等的两三角形全等。(即SSS,边边边) (5)有斜边和一条直角边对应相等的两直角三角形全等。(即HL,斜边直角边) 3、全等三角形的性质: (1)全等三角形的对应边相等、对应角相等; (2)全等三角形的周长相等、面积相等; (3)全等三角形对应边上的中线、高,对应角的平分线都相等。 4、全等三角形的作用: (1)用于直接证明线段相等,角相等。 (2)用于证明直线的平行关系、垂直关系等。 (3)用于测量人不能的到达的路程的长短等。 (4)用于间接证明特殊的图形。(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。 (5)用于解决有关等积等问题。 初二上数学知识点 同类项的概念:所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也叫同类项。 判断几个单项式或项,是否是同类项的两个标准: ①所含字母相同。②相同字母的次数也相同。 判断同类项时与系数无关,与字母排列的顺序也无关。 合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。 合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。 合并同类项步骤: ⑴.准确的找出同类项。 ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。 合并同类项时注意: (1)如果两个同类项的系数互为相反数,合并同类项后,结果为0。 (2)不要漏掉不能合并的项。 (3)只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 (4)不是同类项千万不能进行合并。 初二上册数学一次函数知识点总结 一、函数: 一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。 二、自变量取值范围 使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。 三、函数的三种表示法及其优缺点 (1)关系式(解析)法 两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。 (2)列表法 把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。 (3)图象法 用图象表示函数关系的方法叫做图象法。 四、由函数关系式画其图像的一般步骤 (1)列表:列表给出自变量与函数的一些对应值 (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点 (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。 五、正比例函数和一次函数 1、正比例函数和一次函数的概念 一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。 特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。 2、一次函数的图像:所有一次函数的图像都是一条直线 3、一次函数、正比例函数图像的主要特征: 一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。 八年级数学课本知识点相关文章: ★八年级上册数学课本的知识点归纳 ★人教版八年级上册数学课本知识点归纳 ★人教版八年级数学上册知识点总结 ★八年级下册数学知识点整理 ★人教版八年级上册数学课本知识点归纳(2) ★八年级数学知识点整理归纳 ★八年级数学上册知识点总结人教版 ★八年级下册数学书知识点 ★新人教版八年级数学上册知识点 ★初二数学上册知识点总结
八年级数学课本知识点

八年级数学上册知识点

只有学习精彩,生命才精彩,只有学习成功,事业才成功。每一门科目都有自己的学习 方法 ,数学作为最烧脑的科目之一,需要不断的练习。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。 初二上学期数学知识点归纳 三角形知识概念 1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。 4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。 5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。 6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 8、多边形的内角:多边形相邻两边组成的角叫做它的内角。 9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。 12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。 13、公式与性质: (1)三角形的内角和:三角形的内角和为180° (2)三角形外角的性质: 性质1:三角形的一个外角等于和它不相邻的两个内角的和。 性质2:三角形的一个外角大于任何一个和它不相邻的内角。 (3)多边形内角和公式:边形的内角和等于?180° (4)多边形的外角和:多边形的外角和为360° (5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。 八年级上册数学知识 一、在平面内,确定物体的位置一般需要两个数据。 二、平面直角坐标系及有关概念 1、平面直角坐标系 在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。 3、点的坐标的概念 对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。 点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。 平面内点的与有序实数对是一一对应的。 4、不同位置的点的坐标的特征 (1)、各象限内点的坐标的特征 点P(x,y)在第一象限:x;0,y;0 点P(x,y)在第二象限:x;0,y;0 点P(x,y)在第三象限:x;0,y;0 点P(x,y)在第四象限:x;0,y;0 (2)、坐标轴上的点的特征 点P(x,y)在x轴上,y=0,x为任意实数 点P(x,y)在y轴上,x=0,y为任意实数 点P(x,y)既在x轴上,又在y轴上,x,y同时为零,即点P坐标为(0,0)即原点 (3)、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线(直线y=x)上,x与y相等 点P(x,y)在第二、四象限夹角平分线上,x与y互为相反数 (4)、和坐标轴平行的直线上点的坐标的特征 位于平行于x轴的直线上的各点的纵坐标相同。 位于平行于y轴的直线上的各点的横坐标相同。 初二数学复习方法 一、复习内容: 第一章:勾股定理 第二章:实数第三章:位置与坐标 第四章:一次函数 第五章:二元一次方程组 第六章:数据的分析 第七章:平行线的证明 二、复习目标: 八年级数学本学期知识点多,复习时间又比较短,只有三周的时间。 根据实际情况,应该完成如下目标: (一)、整理本学期学过的知识与方法:1.第一、七章是几何部分。这三章的重点是勾股定理的应用以及平行线的性质与判别还有三角形内角和定理及其应用。所以记住性质是关键,学会判定是重点,灵活应用是目的。要学会判定方法的选择,不同图形之间的区别和联系要非常熟悉,形成一个有机整体。对常见的证明题要多练多总结。2.第四五六章主要是概念的教学,对这几章的考试题型学生可能都不熟悉,所以要以与课本同步的训练题型为主,要列表或作图的,让学生积极动手操作,并得出结论,课堂上教师讲评,尽量是精讲多练,该动手的要多动手,尽可能的让学生自己总结出论证几何问题的常用分析方法。3.第二章主要是计算,教师提前先把概念、性质、方法综合复习,加入适当的练习,在练习计算。课堂上逐一对易错题的讲解,多强调解题方法的针对性。最后针对平时练习中存在的问题,查漏补缺。 (二)、在自己经历过的解决问题活动中,选择一个有挑战问题性的问题,写下解决它的过程:包括遇到的困难、克服困难的方法与过程及所获得的体会,并选择这个问题的原因。 (三)、通过本学期的数学学习,让同学们总结自己有哪些收获;有哪些需要改进的地方。 三、复习方法: 1、强化训练,这个学期计算类和证明类的题目较多,在复习中要加强这方面的训练。特别是一次函数,在复习过程中要分类型练习,重点是解题方法的正确选择同时使学生养成检查计算结果的习惯。还有几何证明题,要通过针对性练习力争达到少失分,达到证明简练又严谨的效果。 2、加强管理严格要求,根据每个学生自身情况、学习水平严格要求,对应知应会的内容要反复讲解、练习,必须做到学一点会一点,对接受能力差的学生课后要加强辅导,及时纠正出现的错误,平时多小测多检查。对能力较强的学生要引导他们多做课外习题,适当提高做题难度。 3、加强证明题的训练,通过近阶段的学习,我发现学生对证明题掌握不牢,不会找合适的分析方法,部分学生看不懂题意,没有思路。在今后的复习中我准备拿出一定的时间来专项练习证明题,引导学生如何弄懂题意、怎样分析、怎样写证明过程。力争让学生把各种类型题做全并抓住其特点。 4、加强成绩不理想学生的辅导,制定详细的复习计划,对他们要多表扬多鼓励,调动他们学习的积极性,利用课余时间对他们进行辅导,辅导时要有耐心,要心平气和,对不会的知识要多讲几遍,不怕麻烦,直至弄懂弄会。 四、课时安排: 本次复习共三周时间,具体安排如下:第一章1课时第二章2课时第三章1课时第四章2课时第五章2课时第六章1课时第七章2课时模拟测试4课时 五、复习阶段采取的措施: 1.精心备课上课,针对班级学生出现的错题及所涉及到的重点问题认真挑选试题。2.对于复习阶段作业的布置,少而精,有针对性,并且很抓订正及改错。3.在试题的选择上作到面面俱到,重点难点突出,不重不漏。4.面向全体学生。由于学生在知识、技能方面的发展和兴趣、特长等不尽相同,所以要因材施教。在组织教学时,应从大多数学生的实际出发,并兼顾学习有困难的和学有余力的学生。对学习有困难的学生,要特别予以关心,及时采取有效措施,激发他们学习数学的兴趣,指导他们改进学习方法。减缓他们学习中的坡度,使他们经过努力,能够达到大纲中规定的基本要求。对学有余力的学生,要通过讲授选学内容和组织课外活动等多种形式,满足他们的学习愿望,发展他们的数学才能。5.重视改进教学方法,坚持启发式,反对注入式。教师在课前先布置学生预习,同时要指导学生预习,提出预习要求,并布置与课本内容相关、难度适中的尝试题材由学生课前完成,教学中教师应帮助学生梳理学习的知识,指出重点和易错点,解答学生复习时遇到的问题,使学生在学习中体会成功,调动学习积极性。6.改革作业结构减轻学生负担。将学生按学习能力分成几个层次,分别布置难、中、易三档作业,使每类学生都能在原有基础上提高。 八年级数学上册知识点相关文章: ★人教版八年级数学上册知识点总结 ★初二数学上册知识点总结 ★八年级数学上册知识点归纳 ★八年级数学知识点整理归纳 ★数学八年级上册知识点整理 ★八年级数学上册知识点北师大版 ★初二数学上册知识点总结归纳 ★初二数学知识点归纳上册人教版 ★数学八年级上册知识点 ★初二数学上册知识点
八年级数学上册知识点

人教版八年级数学知识点

学习知识要善于思考,思考,再思考。每一门科目都有自己的学习 方法 ,但其实都是万变不离其中的,数学作为最烧脑的科目之一,也是要记、要背、要讲练的。下面是我给大家整理的一些 八年级 数学的知识点,希望对大家有所帮助。 初二上学期数学知识点归纳 分式方程 一、理解定义 1、分式方程:含分式,并且分母中含未知数的方程——分式方程。 2、解分式方程的思路是: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程。 (2)解这个整式方程。 (3)把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根是原方程的增根,必须舍去。 (4)写出原方程的根。 “一化二解三检验四总结” 3、增根:分式方程的增根必须满足两个条件: (1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的.根。 4、分式方程的解法: (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程; (3)解整式方程;(4)验根; 注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 5、分式方程解实际问题 步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本身和实际问题两个方面进行检验。 二、轴对称图形: 一个图形沿一条直线对折,直线两旁的部分能够完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。 1、轴对称: 两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。这条直线叫做对称轴。互相重合的点叫做对应点。 2、轴对称图形与轴对称的区别与联系: (1)区别。轴对称图形讨论的是“一个图形与一条直线的对称关系”;轴对称讨论的是“两个图形与一条直线的对称关系”。 (2)联系。把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。 3、轴对称的性质: (1)成轴对称的两个图形全等。 (2)对称轴与连结“对应点的线段”垂直。 (3)对应点到对称轴的距离相等。 (4)对应点的连线互相平行。 三、用坐标表示轴对称 1、点(x,y)关于x轴对称的点的坐标为(x,-y); 2、点(x,y)关于y轴对称的点的坐标为(-x,y); 3、点(x,y)关于原点对称的点的坐标为(-x,-y)。 四、关于坐标轴夹角平分线对称 点P(x,y)关于第一、三象限坐标轴夹角平分线y=x对称的点的坐标是(y,x) 点P(x,y)关于第二、四象限坐标轴夹角平分线y=-x对称的点的坐标是(-y,-x) 八年级数学知识点 1、全等三角形的对应边、对应角相等 2、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 5、边边边公理(SSS)有三边对应相等的两个三角形全等 6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 7、定理1在角的平分线上的点到这个角的两边的距离相等 8、定理2到一个角的两边的距离相同的点,在这个角的平分线上 9、角的平分线是到角的两边距离相等的所有点的集合 10、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 11、推论1等腰三角形顶角的平分线平分底边并且垂直于底边 12、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 13、推论3等边三角形的各角都相等,并且每一个角都等于60° 14、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 15、推论1三个角都相等的三角形是等边三角形 16、推论2有一个角等于60°的等腰三角形是等边三角形 17、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 18、直角三角形斜边上的中线等于斜边上的一半 19、定理线段垂直平分线上的点和这条线段两个端点的距离相等 20、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 21、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 22、定理1关于某条直线对称的两个图形是全等形 23、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 24、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 25、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 26、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 27、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形 初二数学学习方法十大技巧 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法 在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。 7、反证法 反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。 反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;/至少有两个。 归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。 8、面积法 平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。 用归纳法或分析法证明平面几何题,其困难在添置辅助线。面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。 9、几何变换法 在数学问题的研究中,,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。中学数学中所涉及的变换主要是初等变换。有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。另一方面,也可将变换的观点渗透到中学数学教学中。将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。 几何变换包括:(1)平移;(2)旋转;(3)对称。 10、客观性题的解题方法 选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。 填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。 要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。下面通过实例介绍常用方法。 (1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。 (2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。当遇到定量命题时,常用此法。 (3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。这种方法叫特殊元素法。 (4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。 (5)图解法:借助于符合题设条件的图形或图像的性质、特点来判断,作出正确的选择称为图解法。图解法是解选择题常用方法之一。 (6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,称为分析法。 人教版八年级数学知识点相关文章: ★人教版八年级数学上册知识点总结 ★八年级数学上册知识点总结人教版 ★人教版八年级数学上册知识点整理 ★八年级数学知识点整理归纳 ★八年级数学知识点整理 ★人教版八年级上册数学课本知识点归纳 ★初二数学知识点归纳上册人教版 ★人教版八年级数学上册知识点 ★人教版八年级上册数学知识点总结 ★新人教版八年级数学上册知识点
人教版八年级数学知识点

初二数学知识点归纳上册人教版

虽然知道,造成高二数学成绩不好的原因是多方面的,但最核心的一点是我们对相关知识的掌握还不够透彻。初二数学知识点归纳上册人教版有哪些?一起来看看初二数学知识点归纳上册人教版,欢迎查阅! 初二数学知识点总结归纳 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数. 2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤: ① 列出常数项分解成两个因数的积各种可能情况; ②尝试其中的哪两个因数的和恰好等于一次项系数. 3.将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进行约分的目的是要把这个分式化为最简分式. 3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2, (x-y)3=-(y-x)3. 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方. 6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减. (八)分数的加减法 1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定几个分式的公分母. 通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分: 把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。 8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 9.作为最后结果,如果是分式则应该是最简分式. (九)含有字母系数的一元一次方程 1.含有字母系数的一元一次方程 引例:一数的a倍(a≠0)等于b,求这个数。用x表示这个数,根据题意,可得方程 ax=b(a≠0) 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。 含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。 10.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号. 11.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 12.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分,这样可使运算简化. 初二数学复习提纲方法 一、克服心理疲劳 第一,要有明确的学习目的。学习就像从河里抽水,动力越足,水流量越大。动力来源于目的,只有树立正确的学习目的,才会产生强大的学习动力; 第二,要培养浓厚的学习兴趣。兴趣的形成与大脑皮层的兴奋中心相联系,并伴有愉快、喜悦、积极的情绪体验。而心理疲劳的产生正是大脑皮层抵制的消极情绪引起的`。因此,培养自己的学习兴趣,是克服心理疲劳的关键所在。有了兴趣,学习才会有积极性、自觉性、主动性,才能使心理处于一种良好的竞技状态; 第三,要注意学习的多样化,书本学习本身就是枯燥单调的,如果多次重复学习某门课程或章节内容,易使大脑皮层产生抑制,出现心理饱和,产生厌倦情绪。所以考生不妨将各门课程交替起来进行复习。 二、战胜高原现象 复习中的高原现象,是指在复习到一定时期时,往往停滞不前,不仅复习不见进步,反而有退步的现象。在高原期内,并非学习毫无进步,而是某部分进步,另外一些部分则退步,两者相抵,致使复习成效未从根本上发生变化,因而使人灰心失望。当考生在复习迎考过程中遭遇高原期时,切忌急躁或丧失信心,应找出学习方法、学习积极性等方面的原因。及时调整复习进度,在科学用脑、提高复习效率上多下功夫。 三、重视复习“错误” 如果在复习中不善于从错误中走出来,缺陷和漏洞就会越来越多,任其下去,最终就会蚁穴溃堤。在备考期间,要想降低错误率,除了及时订正、全面扎实复习之外,非常关键的问题就是找出原因,不断复习错误。即定期翻阅错题,回想错误的原因,并对各种错题及错误原因进行分类整理。对其中那些反复错误的问题还可考虑再做一遍,以绝“后患”。错误原因大致有:概念理解上的问题、粗心大意带来的问题以及书写潦草凌乱给自己带来的错觉问题等,从而有效地避免在考试时再犯同一类型的错误。 四、把握心理特点搞好考前复习 实践证明,一个人在气质、性格、心理稳定程度等因素也会影响考前复习。考生在复习迎考过程中,应根据自己的心理特点来制订复习迎考计划,根据自己的心态来调整复习的进度,选择与运用的复习方式方法,使自己的考前复习达到预期的效果。 1、课本不容忽视 对于初二的学生来说,都在学习新课,课本是大家都容易忽视的一个重要的复习资料。平时在学校的课堂上大家都会随堂记笔记,课本基本不会翻看,建议同学们在翻看笔记的同时,对照课本,把学过的知识点反复阅读、理解,并对照课后练习里的习题进行反复思考、琢磨、融会贯通,加深对知识点的理解。对于课本上的重点内容、重点例题也要着重记忆。 2、错题本 相信学习习惯好的学生都应该有一本错题本,把每次习题、作业、测试中的错题抄录下来,明确答案,找到错误原因,发现自己知识和能力上的薄弱点,经常拿出来翻看,遇到反复做错的题目,要主动和同学商量,向老师请教,彻底把题目弄懂、弄透,以免再犯同类错误。 初二数学全册复习提纲 第十一章 一次函数 我们称数值变化的量为变量(variable)。 有些量的数值是始终不变的,我们称它们为常量(constant)。 在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们说x是自变量(independentvariable),y是x的函数(function)。 如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。 形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。 形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。 当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。 每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。 第十二章 数据的描述 我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。 常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。 条形图:描述各组数据的个数。 复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。 扇形图:描述各组频数的大小在总数中所占的百分比。 折线图:描述数据的变化趋势。 直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。 在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。 求出各个小组两个端点的平均数,这些平均数称为组中值。 第十三章 全等三角形 能够完全重合的两个图形叫做全等形(congruent figures)。 能够完全重合的两个三角形叫做全等三角形(congruent triangles)。 全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。 全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS) 两边和它们的夹角对应相等的两个三角形全等。(SAS) 两角和它们的夹边对应相等的两个三角形全等。(ASA) 两个角和其中一个角的对边对应相等的两个三角形全等。(AAS) 角平分线的性质:角平分线上的点到角的两边的距离相等。 到角两边的距离相等的点在角的平分线上。 第十四章 轴对称 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。 轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。 线段垂直平分线上的点与这条线段两个端点的距离相等。 由一个平面图形得到它的轴对称图形叫做轴对称变换。 等腰三角形的性质: 等腰三角形的两个底角相等。(等边对等角) 等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一)(附:顶角+2底角=180°) 如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 有一个角是60°的等腰三角形是等边三角形。 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。 第十五章 整式 式子是数或字母的积的式子叫做单项式(monomial)。单独的一个数或字母也是单项式。 单项式中的数字因数叫做这个单项式的系数(coefficient)。 一个单项式中,所有字母的指数的和叫做这个单项式的次数(degree)。 几个单项式的和叫做多项式(polynomial)。每个单项式叫多项式的项(term),其中,不含字母的叫做常数项(constantterm)。 多项式里次数的项的次数,就是这个多项式的次数。 单项式和多项式统称整式(integral expression_r)。 所含字母相同,并且相同字母的指数也相同的项叫做同类项。 把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。 几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。 同底数幂相乘,底数不变,指数相加。 幂的乘方,底数不变,指数相乘 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 (x+p)(x+q)=x^2+(p+q)x+pq 平方差公式:(a+b)(a-b)=a^2-b^2 完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2 (a+b+c)^2=a^2+2a(b+c)+(b+c)^2 同底数幂相除,底数不变,指数相减。 任何不等于0的数的0次幂都等于1。 第十六章 分式 如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式(fraction)。 分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。 分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。 分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 分式乘方要把分子、分母分别乘方。 a^-n=1/a^n (a≠0) 这就是说,a^-n (a≠0)是a^n的倒数。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 第十七章 反比例函数 形如y=k/x(k为常数,k≠0)的函数称为反比例函数(inverse proportional function)。 反比例函数的图像属于双曲线(hyperbola)。 当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; 当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 第十八章 勾股定理 勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a^2+b^2=c^2 勾股定理逆定理:如果三角形三边长a,b,c满足a^2+b^2=c^2,那么这个三角形是直角三角形。 经过证明被确认正确的命题叫做定理(theorem)。 我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理) 第十九章 四边形 有两组对边分别平行的四边形叫做平行四边形。 平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。 平行四边形的判定: 1.两组对边分别相等的四边形是平行四边形; 2.对角线互相平分的四边形是平行四边形; 3.两组对角分别相等的四边形是平行四边形; 4.一组对边平行且相等的四边形是平行四边形。 三角形的中位线平行于三角形的第三边,且等于第三边的一半。 直角三角形斜边上的中线等于斜边的一半。 矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。 矩形判定定理: 1.有一个角是直角的平行四边形叫做矩形。 2.对角线相等的平行四边形是矩形。 3.有三个角是直角的四边形是矩形。 菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 菱形的判定定理: 1.一组邻边相等的平行四边形是菱形(rhombus)。 2.对角线互相垂直的平行四边形是菱形。 3.四条边相等的四边形是菱形。 S菱形=1/2×ab(a、b为两条对角线) 正方形的性质:四条边都相等,四个角都是直角。 正方形既是矩形,又是菱形。 正方形判定定理: 1.邻边相等的矩形是正方形。 2.有一个角是直角的菱形是正方形。 一组对边平行,另一组对边不平行的四边形叫做梯形(trapezium)。 等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。 等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。 线段的重心就是线段的中点。 平行四边形的重心是它的两条对角线的交点。 三角形的三条中线交于疑点,这一点就是三角形的重心。 宽和长的比是(根号5-1)/2(约为0.618)的矩形叫做黄金矩形。 第二十章 数据的分析 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。 一组数据中出现次数最多的数据就是这组数据的众数(mode)。 一组数据中的数据与最小数据的差叫做这组数据的极差(range)。 方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。 数据的收集与整理的步骤:1.收集数据 2.整理数据 3.描述数据 4.分析数据 5.撰写调查报告 初二数学知识点归纳上册人教版相关文章: ★人教版八年级数学上册知识点总结 ★初二数学上册知识点总结 ★初二数学上册知识点总结归纳 ★数学八年级上册知识人教版 ★八年级数学上册知识点归纳 ★初二数学上册知识点总结2020 ★八年级上册数学的知识点归纳 ★人教版八年级上册数学教材分析 ★初二上册数学知识点总结与学习方法 ★八年级上册数学知识点总结
初二数学知识点归纳上册人教版
猜你喜欢的文章
大家都在看