数学手抄报的资料内容
数学确属美妙的杰作,宛如画家或诗人的创作一样 —— 是思想的综合;如同颜色或词汇的综合一样,应当具有内在的和谐一致。以下是数学手抄报的资料内容,欢迎阅读。 初中趣味数学知识 1、 两个男孩各骑一辆自行车,从相距2o英里(1英里合1.6093千米)的两个地方,开始沿直线相向骑行。在他们起步的那一瞬间,一辆自行车车把上的一只苍蝇,开始向另一辆自行车径直飞去。它一到达另一辆自行车车把,就立即转向往回飞行。这只苍蝇如此往返,在两辆自行车的车把之间来回飞行,直到两辆自行车相遇为止。如果每辆自行车都以每小时1o英里的等速前进,苍蝇以每小时15英里的等速飞行,那么,苍蝇总共飞行了多少英里? 答案 每辆自行车运动的速度是每小时10英里,两者将在1小时后相遇于2o英里距离的中点。苍蝇飞行的速度是每小时15英里,因此在1小时中,它总共飞行了15英里。 许多人试图用复杂的方法求解这道题目。他们计算苍蝇在两辆自行车车把之间的第一次路程,然后是返回的路程,依此类推,算出那些越来越短的路程。但这将涉及所谓无穷级数求和,这是非常复杂的高等数学。据说,在一次鸡尾酒会上,有人向约翰·冯·诺伊曼(john von neumann, 1903~1957,20世纪最伟大的数学家之一。)提出这个问题,他思索片刻便给出正确答案。提问者显得有点沮丧,他解释说,绝大多数数学家总是忽略能解决这个问题的简单方法,而去采用无穷级数求和的复杂方法。 冯·诺伊曼脸上露出惊奇的神色。“可是,我用的是无穷级数求和的方法.”他解释道。 2、 有位渔夫,头戴一顶大草帽,坐在划艇上在一条河中钓鱼。河水的流动速度是每小时3英里,他的划艇以同样的速度顺流而下。“我得向上游划行几英里,”他自言自语道,“这里的鱼儿不愿上钩!” 正当他开始向上游划行的时候,一阵风把他的草帽吹落到船旁的水中。但是,我们这位渔夫并没有注意到他的草帽丢了,仍然向上游划行。直到他划行到船与草帽相距5英里的时候,他才发觉这一点。于是他立即掉转船头,向下游划去,终于追上了他那顶在水中漂流的草帽。 在静水中,渔夫划行的速度总是每小时5英里。在他向上游或下游划行时,一直保持这个速度不变。当然,这并不是他相对于河岸的速度。例如,当他以每小时5英里的速度向上游划行时,河水将以每小时3英里的速度把他向下游拖去,因此,他相对于河岸的速度仅是每小时2英里;当他向下游划行时,他的划行速度与河水的流动速度将共同作用,使得他相对于河岸的速度为每小时8英里。 如果渔夫是在下午2时丢失草帽的,那么他找回草帽是在什么时候? 答案 由于河水的流动速度对划艇和草帽产生同样的影响,所以在求解这道趣题的时候可以对河水的流动速度完全不予考虑。虽然是河水在流动而河岸保持不动,但是我们可以设想是河水完全静止而河岸在移动。就我们所关心的划艇与草帽来说,这种设想和上述情况毫无无差别。 既然渔夫离开草帽后划行了5英里,那么,他当然是又向回划行了5英里,回到草帽那儿。因此,相对于河水来说,他总共划行了10英里。渔夫相对于河水的划行速度为每小时5英里,所以他一定是总共花了2小时划完这10英里。于是,他在下午4时找回了他那顶落水的草帽。 这种情况同计算地球表面上物体的速度和距离的情况相类似。地球虽然旋转着穿越太空,但是这种运动对它表面上的一切物体产生同样的效应,因此对于绝大多数速度和距离的问题,地球的这种运动可以完全不予考虑。 3、 一架飞机从a城飞往b城,然后返回a城。在无风的情况下,它整个往返飞行的平均地速(相对于地面的速度)为每小时100英里。假设沿着从a城到b城的方向笔直地刮着一股持续的大风。如果在飞机往返飞行的整个过程中发动机的速度同往常完全一样,这股风将对飞机往返飞行的平均地速有何影响? 怀特先生论证道:“这股风根本不会影响平均地速。在飞机从a城飞往b城的过程中,大风将加快飞机的速度,但在返回的过程中大风将以相等的数量减缓飞机的速度。”“这似乎言之有理,”布朗先生表示赞同,“但是,假如风速是每小时l00英里。飞机将以每小时200英里的速度从a城飞往b城,但它返回时的速度将是零!飞机根本不能飞回来!”你能解释这似乎矛盾的现象吗? 答案 怀特先生说,这股风在一个方向上给飞机速度的增加量等于在另一个方向上给飞机速度的减少量。这是对的。但是,他说这股风对飞机整个往返飞行的平均地速不发生影响,这就错了。 怀特先生的失误在于:他没有考虑飞机分别在这两种速度下所用的.时间。 逆风的回程飞行所用的时间,要比顺风的去程飞行所用的时间长得多。其结果是,地速被减缓了的飞行过程要花费更多的时间,因而往返飞行的平均地速要低于无风时的情况。 风越大,平均地速降低得越厉害。当风速等于或超过飞机的速度时,往返飞行的平均地速变为零,因为飞机不能往回飞了。 4、 《孙子算经》是唐初作为“算学”教科书的著名的《算经十书》之一,共三卷,上卷叙述算筹记数的制度和乘除法则,中卷举例说明筹算分数法和开平方法,都是了解中国古代筹算的重要资料。下卷收集了一些算术难题,“鸡兔同笼”问题是其中之一。原题如下: 令有雉(鸡)兔同笼,上有三十五头,下有九十四足。 问雄、兔各几何? 原书的解法是;设头数是a,足数是b。则b/2-a是兔数,a-(b/2-a)是雉数。这个解法确实是奇妙的。原书在解这个问题时,很可能是采用了方程的方法。 设x为雉数,y为兔数,则有 x+y=b, 2x+4y=a 解之得 y=b/2-a, x=a-(b/2-a) 根据这组公式很容易得出原题的答案:兔12只,雉22只。 数学名言 NO1.把数学当成一门语言学习,学会每一个术语的用法,熟悉每一个符号的意义。 NO2.看《数学形成思想》,不要看《数学变成死相》。 NO3.看《数学中的语言》和《数学中的模式(题型)》。 NO4. 不要放过任何一道看上去很简单的例题——他们往往并不那么简单,或者可以引申出很多知识点。 NO5. 会用数学公式,并不说明你会数学。 NO6. 如果不是天才的话,想学数学就不要想玩游戏——你以为你做到了,其实你的数学水平并没有和你通关的能力一起变高——其实可以时刻记住:学数学是你玩“生活”这个大游戏玩的更好! NO7.浮躁的人容易说:学数学没有用,应该学一些有用的;——是你自己没用了吧!? NO8.浮躁的人容易问:我到底该怎么学;——别问,学就对了。 NO9.浮躁的人容易问:上课到底把老师的板书记下来好还是跟着老师的思维不记笔记好?——告诉你吧,都好——只要你学就行。 NO10 浮躁的人分两种:a)只观望而不学的人;b)只学而不坚持的人。 NO11请不要做浮躁的人。 NO12 把新奇的解题方法挂在嘴边,还不如把常规的解题方法记在心里。 NO13 数学不仅仅是解题。 NO14 学习解题的最好方法之一就是研究例题。 NO15 在任何时刻都不要认为自己解过的题已经足够多了。 NO16 请阅读《数学教材》,掌握数学的标准用语。 NO17看得懂的例题,请仔细看;看不懂的例题,请硬着头皮看。 NO18. 别指望看第一遍书就能记住和掌握什么——请看第二遍、第三遍。 NO19.不要停留在基本题型这个摇篮上,要学会把基本题型当成零件“组装”出来的综合题。 NO20.不要因为数学中的一些词语与自然语言中的词语看上去相同,就认为它们的意义完全一样。 NO21.学习数学的秘诀是:解题,解题,再解题。 NO22.记住:数学中的概念、对象不只是数学专有的,在其它学科中不要忘了“用数学”。 NO23.请把书上的例题亲自做一遍。 NO24.请找一些习题,把在书上学到的解题方法用上去! NO25.请重视解题中的细节错误,并在考试前提醒自己。 NO26. 经常回顾自己以前解过的题,并尝试新的解法,把学到的新知识运用进去。 NO27.不要漏掉书中任何一个练习题——请全部做完并记录下解题思路。 NO28. 当你在一个解题思路上完成一半却发现自己的方法很拙劣时,请不要马上丢弃,至少要在用新的更好的方法解完题之后,回过来重新分析一下前面的思路。 NO29.决不要因为题目“很小”就不遵循某些你不熟练的解题规范——好习惯是培养出来的,而不是一次记住的。 NO30.每学到一个数学难点的时候,尝试着对别人讲解这个知识点并让他理解——你能讲清楚才说明你真的理解了。 NO31.保存好你解过的所有习题——那是你最好的积累之一。 NO32.请热爱数学!

数学手抄报内容
关于数学手抄报内容 在平平淡淡的日常中,大家都经常接触到手抄报吧,借助手抄报可以培养我们的创新意识和创造能力。那么问题来了,到底什么样的手抄报才经典呢?下面是我收集整理的关于数学手抄报,供大家参考借鉴,希望可以帮助到有需要的朋友。 数学手抄报内容 人类逐步有了数的概念,由自然数开始。由于人有十个手指,所以多数民族建立了十进位制的自然数表示方法。二十个一组的太多太大,不能一目了然,还要用上脚趾,五个一组又太少,使组数太多,十个一组是比较会让人喜爱的折衷方法。有古巴比仑记数法、希腊记数法、罗马记数法、中国记数法,发展进步了5000年后,印度人第一次发明了零,零加自然数称为为整数,传入伊斯兰世界形成目前通用的阿拉伯数字。计算机的出现又需要二进位制,就是近几十年的事了。 算术运算起步只需要有加法的概念,乘是多次加的简化运算,减是加的逆运算,除是乘的逆运算,这就是四则运算。除法很快导致了分数的出现,以十、百等为分母的除法,简化表达就是小数和循环小数。不是拥有钱而是欠人的钱如何表示,这就出现了负数,以上这些数放在一起,就是有理数,可以表示在一个数轴上。 人们曾经很长时间以为数轴上的数都是有理数,后来有人发现,正方形的边是1,它的对角线长度就无法用有理数表示,用园规在数轴上找到那个对应点就是无理数的点,这是第一次数学危机。1761年德国物理学家和数学家兰伯卢格严格证明了π也是一个无理数,这样把无理数包入之后,有理数与无理数统称为实数,数轴也称之为实数轴。后来人们发现,如果在实数轴上随机的抽取,得到有理数的概率几乎是零,得到无理数的概率几乎是1,无理数比有理数多得多。为什么会如此,因为我们生活的这个客观世界,本来就是无理的多过有理的。为了解决负数的开平方是什么,16世纪出了虚数i,虚轴与实轴垂直交叉形成一个复平面,数也发展成为由虚部和实部组成的复数。数的概念会不会继续发展,我们试目以待。 有趣的数学小知识 你知道吗?我们每个人身上都携带着几把尺子。 假如你“一拃”的长度为8厘米,量一下你课桌的长为7拃,则可知课桌长为56厘米。 如果你每步长65厘米,你上学时,数一数你走了多少步,就能算出从你家到学校有多远。身高也是一把尺子。 如果你的身高是150厘米,那么你抱住一棵大树,两手正好合拢,这棵树的一周的长度大约是150厘米。 因为每个人两臂平伸,两手指尖之间的长度和身高大约是一样的。要是你想量树的高,影子也可以帮助你的。你只要量一量树的影子和自己的影子长度就可以了。因为树的高度=树影长×身高÷人影长。这是为什么?等你学会比例以后就明白了。 你若去游玩,要想知道前面的山距你有多远,可以请声音帮你量一量。声音每秒能走331米,那么你对着山喊一声,再看几秒可听到回声,用331乘听到回声的时间,再除以2就能算出来了。 学会用你身上这几把尺子,对你计算一些问题是很有好处的。同时,在你的日常生活中,它也会为你提供方便的。你可要想着它呀! 冬令时节,天寒地冻,小猫、小狗在睡觉时,不是我们想象中的那样趴着身子,而是喜欢蜷缩着。那么你是否想过这是为什么呢?它与数学有联系吗?我们先来思考一道熟悉的数学问题,题目是:用12块棱长1厘米的正方体小木块搭成不同的长方体,共有几种不同搭法? 通过动手搭拼、试验,得到4种不同的搭法。 利用学过的知识,可知道这4个长方体的体积都相等,而它们的表面积分别为:50(平方厘米)、40(平方厘米)、38(平方厘米)、32(平方厘米),即(图4)的表面积最小。 这道题表明这样一个数学规律:在体积相等的情况下,小正方体之间的重合部分越多,其表面积就越小。 根据这个数学规律,我们不难悟出:小猫、小狗在冬天喜欢蜷缩着身子睡觉,正是在体积不变的情况下,增加身子相互重合部分,因此,减少暴露在外面的表面积,也就是受寒面积减少,散发的热量也会减少。小猫、小狗在冬天蜷缩着身子睡觉可以起到防寒保温的作用。 著名的女数学家索菲·科瓦列夫斯卡娅故事 数学是人类认识世界和改造世界的有力工具,也是一片任有志之士自由飞翔的广阔天地。数学的足迹遍及社会的每一个角落。数学家的故事也像数学本身一样,神秘动人,发人深思。下面给同学们讲一讲著名的女数学家索菲·科瓦列夫斯卡娅的故事。 索菲·科瓦列夫斯卡娅(1850~1891)是俄国人,她一生获得了很多“第一”:她是历史上第一个获得数学博士学位的女性,是第一个获得科学院院士称号的女数学家,此外,她还是除了意大利外世界上第一个担任数学教授的妇女,她对数学做出了卓越的贡献。 索菲·科瓦列夫斯卡娅从小就对数学怀有特殊的感情,并有着极大的好奇心和强烈的求知欲望。在她8岁的`时候,全家搬到了波里宾诺田庄。由于带去的糊墙纸不够用,父母就在她的房间里用著名的数学家奥斯特洛格拉得斯基所著的微积分讲义来裱糊墙壁。那时,索菲·科瓦列夫斯卡娅常常独自坐在卧室的墙前,望着糊墙纸上奇妙的数字和神秘的符号出神,一坐就是好几个小时。后来,索菲·科瓦列夫斯卡娅在自传中写道:“我常常坐在那神秘的墙前,企图解释某些词句,找出这些书页的正确次序。通过反复阅读,书页上那些奇怪的公式,甚至有些文字的表述,都在我的脑海里留下了深刻的印象,尽管当时我对它们还是一窍不通。” 索菲·科瓦列夫斯卡娅的祖父和外祖父都是出色的数学家,这或许有助于形成她的数学天赋,但她的成功主要还是源于她不懈的努力。她在学习数学时,注意力总是非常集中,能很快理解和掌握老师所讲的内容。有一次,数学老师让索菲·科瓦列夫斯卡娅重复上次课上所讲的内容,索菲·科瓦列夫斯卡娅没有按老师讲的方法去讲,而是换成了自己的思路方法。当她讲完后,老师立即竖起大拇指夸她了不起。由此可见,索菲·科瓦列夫斯卡娅善于独立思考问题,善于积极寻找自己的思路方法,使自己的思维不局限于某一特定的方式,这对她日后的数学研究非常重要。 高中毕业之后,索菲·科瓦列夫斯卡娅想继续学习高深的数学知识,但当时俄国有一种普遍轻视妇女的风气,妇女无权接受高等教育。对索菲·科瓦列夫斯卡娅来说,继续深造只有出国求学了。索菲·科瓦列夫斯卡娅把想要出国求学的愿望告诉家人,遭到了家人的强烈反对。为了争取上大学的权利,索菲·科瓦列夫斯卡娅冲破了种种阻力,终于如愿以偿来到了德国的海德堡大学求学,在陌生的异国城市过起了紧张而简朴的学习生活。 在海德堡大学求学的过程中,索菲·科瓦列夫斯卡娅为了取得更大的'进步,到被誉为“现代分析之父”的数学大师魏尔斯特拉斯教授家中拜师求教。这位数学大师被索菲·科瓦列夫斯卡娅的诚恳态度打动,经过多次测试,满意地收下了这位勤奋好学的女学生。在魏尔斯特拉斯的悉心指导下,索菲·科瓦列夫斯卡娅更加刻苦地钻研数学。经过一段时间的学习与实践,索菲·科瓦列夫斯卡娅写就了三篇重要的数学学术论文,不久,又成功地解决了困扰数学家们一百多年的“数学水妖”问题,并因此获得了著名的“鲍廷奖金”。 索菲·科瓦列夫斯卡娅一生获得了很多荣誉,为数学的发展做出了巨大贡献,但她从没有自满过。不幸的是,她在一次旅途中染上了风寒,由于没能及时休息,以致卧床不起,不久便与世长辞,终年只有41岁。 数学的名言 1. 如果一个人的注意力经常不能集中,那就让他学习数学好了。因为在证明数学定理时,即使是一刹那的思想不集中,就必须重新开始。 ——F. Bacon,1561-1626 2. 数学知识使思维增加活力,使之摆脱偏见、轻信和迷信的束缚。 3. (英统计学家J. Arbuthnot, 1667-1735) 4. 数学语言对任何人来说,不仅是最简单明了的语言,而且也是最严格的语言。 5. (英国大法官H. P. Brougham, 1778-1868) 6. 历史使人明智,诗歌使人聪慧,数学使人精密,哲理使人深刻,伦理学使人有修养,逻辑与修辞使人善辩。 ——培根 7. 学习数学是为了探索宇宙的奥秘。如所知,星球与地层、热与电、变异与存在的规律,无不涉及数学真理。如果说语言反映和揭示了造物主的心声,那么数学就反映和揭示了造物主的智慧,并且反复地重复着事物如何变异为存在地故事。数学集中并引导我们地精力、自尊和愿望去认识真理,并由此而生活在上帝地大家庭中。正如文学诱导人们地情感与了解一样,数学则启发人们地想象与推理。 ——Chancellor,W.E 8. 一个人就好像一个分数,他的实际才能好比分子,而他对自己的估价好比分母。分母越大,则分数的值就越小。 ----托尔斯泰 9. 天才=1%的灵感+99%的血汗。 ---- 爱迪生 10. 要利用时间,思考一下一天之中做了些什么,是正号还是负号,倘若是+,则进步;倘若是-,就得吸取教训,采取措施。” ----季米特洛夫 11. 近代最伟大的科学家爱因斯坦在谈成功的秘诀时,写下一个公式:A=x+y+z。并解释道:A代表成功,x代表艰苦的劳动,y代表正确的方法,Z代表少说空话。 ----爱因斯坦 12. 一个人的贡献和他的自负严格地成反比,这似乎是品行上的一个公理。----拉格朗日 13. 时间是个常数,但对勤奋者来说,是个变数。用分来计算时间的人比用小时来计算时间的人时间多59倍。 ——俄国历史学家雷巴柯夫 14. 人脑是这样一台计算机,它在一个相当低的准确水平上,非常可靠地进行工作。 --- 冯 · 诺伊曼 15. 宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。 ——华罗庚 16. 数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。。数学之所以有高声誉,另一个理由就是数学使得自然科学实现定理化,给予自然科学某种程度的可靠性。——爱因斯坦 17. 数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。 ——冯纽曼 18. 不管数学的任一分支是多么抽象,总有一天会应用在这实际世界上。 ——罗巴切夫斯基 ;

数学手抄报文字内容
数学手抄报文字内容 数学是一科比较难学的科目,通过制作数学手抄报绘画活动,可以吸引对数学的兴趣,下面由我为大家整理的数学的手抄报内容资料,希望可以帮到大家! 【数学的手抄报内容资料一:该走哪条路】 过路智力题之该走哪条路 个人站在岔道口,分别通向A国和B国,这两个国家的人非常奇怪,A国的人总是说实话,B国的人总是说谎话。路口站着一个A国人和一个B国人:甲和乙,但是不知道他们真正的身份,现在那个人要去B国,但不知道应该走哪条路,需要问这两个人。只许问一句。他是怎么判断该走那条路的? 答案: 如果甲是A国人,说的是真话,问甲:"如果我问乙哪条路是安全之路,他会指哪条路?"他指出的乙说的路就是错误的,另一条路就是正确的。 答案2:如果甲是B国人,说的是假话同样的问题问甲,因为乙说真话,甲会和乙的答案相反,那么另一条路就是正确的。 【数学的手抄报内容资料二:数学名言】 数学的本质在於它的自由。---康扥尔(Cantor) 在数学的领域中,提出问题的'艺术比解答问题的艺术更为重要。康扥尔(Cantor) 没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。——希尔伯特(Hilbert) 数学是无穷的科学。--赫尔曼外尔 问题是数学的心脏。--P.R.Halmos 只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。--Hilbert 数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。---高斯 哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。……又因为这是使灵魂过渡到真理和永存的捷径。---柏拉图 高斯(数学王子)说:“数学是科学之王” ;

数学的手抄报内容
关于数学的手抄报1 关于数学的手抄报2 关于数学的手抄报3 关于数学的手抄报4 关于数学的手抄报内容1: 相传,在非常遥远的古代,有一天,从黄河中忽然跳出一匹“龙马”,马背上驮着一幅图,图上画着许多神秘的数学符号;后来,从奔腾的洛水中又爬出一只“神龟”来,龟背上驮着一卷书,书中写的是数的排列方法。 出现了“河图洛书”之后,数学也就诞生了。 小朋友,这个神奇的传说有趣吗?不过,它只是个传说而已。 那么,数学是怎样产生的呢?远古时代人类以打猎、采野果为生。在狩猎中,他们发现只有人比兽多,才有可能对付那些猛兽;采果时,他们发现只有当野果堆得老高时,才有可能帮助他们度过漫长的冬天,这样的实践中,他们才逐步领悟了“多”与“少”的概念。 分配食物时,由于人们通常用一只手拿一件物品,这样就把“一”从“多”的概念中分离出来。有了“一”,人们又逐渐形成了“二”的概念,这可能是因为人的双手各拿一件物品吧!那怎样表示“三”呢?人们并没有三只手呀!后来人们用“巧妙”的办法:把第三件物品放在自己的脚边,这样问题不就解决了! 从一些出土的原始社会的文物中也可以看到一些与数目有关的内容,如陶器上有两只耳朵,三只脚等。 形成“一”、“二”、“三”这些数的概念经历了很长的时间。但那时人类还没有表示数的名称,他们表示数时,是靠手势和相应的身体动作。 关于数学的手抄报内容2: 数学是什么?数学是生活的眼睛;是思维的'翅膀;是文字的艺术。话说暑假一天,我和妈妈到爷爷奶奶家去做客。爷爷很勤劳善良,他种了很多植物,养了很多可爱的动物,所以我特别喜欢到爷爷奶奶家去玩。 这不,我刚走进家门,就看见爷爷拿着食物往外走,我就跟了上去。爷爷原来是要去喂鸡和兔,爷爷给我点食物让我喂。过了一会儿,爷爷问:“孙女,你知道我有几只鸡几只兔吗?有36个头,50双脚。”我思考了起来:50双脚就是50×2=100(只),如果我把所有头看作是兔36×4=144(只),但是,为什么有144只脚呢?。然后,我再用144—100=44(只)。我对爷爷说:“爷爷,我知道了,鸡是22只,兔是14只。”也可以用解方程来解答,先把鸡设为x,鸡的脚数+兔的脚数就等于总的脚数,就变出了一个方程式2x+(36—x)×4=50x2,然后再来计算,最后解得x是22,所以鸡是22只,兔是36—22=14(只)所以我的计算是对的。爷爷听了后夸我:“不错,不错,我孙女长知识了。” 快到吃晚饭的时间了,我和爷爷一起去超市买菜。到了超市门口,我发现有许多车摆放子一起。爷爷看见了,就数小汽车和摩托车的轮子数,他笑眯眯的对我问:“孙女,我刚才数了数,发现有两种车,一个是小轿车,一个是摩托车,一共有32辆,108个轮子,你来求一下有几辆小轿车和几辆摩托车?”我算了算,如果假设都变成摩托车32×2=64(个)轮子。44÷(4—2)=22(辆)小轿车。32—22=10(辆)摩托车。我告诉爷爷:“是不是有22辆小轿车,10辆摩托车?”爷爷摸着我的头说:“我孙女不但善于表达,而且爱思考,真了不起!”听了后,我的心里美滋滋的,比谁的都开心。因为我明白了一个道理:数学充满了奥秘;不但有趣味横生的鸡兔同笼,而且还有让我脑洞大开的涂色问题,数学在我们生活中比比皆是,只要我们细心观察就会有许多收获!

数学的手抄报内容
新的数学方法和概念,常常比解决数学问题本身更重要。下面是我为大家整理的关于数学的手抄报内容,欢迎大家的阅读。有关数学的手抄报内容一有关数学的手抄报内容二有关数学的手抄报内容三有关数学的名言1、历史使人贤明,诗造成气质高雅的人,数学使人高尚,自然哲学使人深沉,道德使人稳重,而伦理学和修辞学则使人善于争论。——培根2、第一是数学,第二是数学,第三是数学。—— 伦琴3、宁可少些,但要好些。—— 高斯4、数学是除了语言与音乐之外,人类心灵自由创造力的主要表达方式之一,而且数学是经由理论的建构成为了解宇宙万物的媒介。因此,数学必需保持为知识,技能与文化的主要构成要素,而知识与技能是得传授给下一代,文化则得传承给下一代的。——录自德国数学家hermannweyl语5、数学是科学的大门钥匙,忽视数学必将伤害所有的知识,因为忽视数学的人是无法了解任何其他科学乃至世界上任何其他事物的。更为严重的是,忽视数学的人不能理解他自己这一疏忽,最终将导致无法寻求任何补救的措施。——bacon,roger6、我总是尽我的精力和才能来摆脱那种繁重而单调的计算。—— 纳皮尔7、几何、理论算术和代数,这些学科除了定义和公理之外,没有其他原则,除了演绎以外,没有其他证明过程但就在这一过程中,却已综合了简单性、复杂性、严密性和一般性,这一特性是不为其它学科所具有的。——whewell,w.8、只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。——hilbert9、数学是打开科学大门的钥匙。——培根10、新的`数学方法和概念,常常比解决数学问题本身更重要。—— 华罗庚11、数学之所以比一切其它科学受到尊重,一个理由是因为他的命题是绝对可靠和无可争辩的,而其它的科学经常处于被新发现的事实推翻的危险。—— 爱因斯坦12、以我一生最好的时光追寻那个目标,书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者。——开普勒13、数学是一种别具匠心的艺术。——哈尔莫斯14、问题是数学的心脏。——p.r.halmos15、数学主要的目标是公众的利益和自然现象的解释。—— 傅立叶16、数学是一种会不断进化的文化。——魏尔德17、数学是科学的皇后,而数论是数学的皇后高斯(gauss)音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的一切。——克莱因18、数学是符号加逻辑。——罗素19、数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。——笛卡儿20、数学是无穷的科学。——赫尔曼外尔21、二分之一个证明等于0。—— 高斯22、数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。——高斯23、数学知识有三个不同于其它知识地主要特征:其一是数学知识比其它知识更清晰地使其结果具有真理性;其二是数学知识乃是获得其它正确知识地必经的第一步;其三是数学知识的获得并不依赖于其它知识。——schubert,h.24、数学是各式各样的证明技巧。—— 维特根斯坦25、给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。——高斯
