高中物理题型及解题方法汇总
考生想要在高考物理考试中得到高分,需要掌握各种题型及其相对应的解题方法,下面是我给大家带来的高中物理题型及解题方法汇总,希望对你有帮助。 高中物理题型及解题方法(一)1、直线运动问题 题型概述: 直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板: 解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.? 2、物体的动态平衡问题 题型概述: 物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板: 常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 3、运动的合成与分解问题 题型概述: 运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板: (1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析. 4、抛体运动问题 题型概述: 抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上. 思维模板: (1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解高中物理题型及解题方法(二)5、圆周运动问题 题型概述: 圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况. 思维模板: (1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力. (2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动. 6、牛顿运动定律的综合应用问题 题型概述: 牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高. 思维模板: 以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律. 对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。GMm/R2=mg ②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化. 7、机车的启动问题 题型概述: 机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析. 思维模板: (1)机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f. 这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力). (2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F·s计算,不能用W=P·t计算(因为P为变功率). 8、以能量为核心的综合应用问题 题型概述: 以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体. 思维模板: 能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取.高中物理题型及解题方法(三)9、力学实验中速度的测量问题 题型概述: 速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量.速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度. 思维模板: 用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt. 10、电容器问题 题型概述: 电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面. 思维模板: (1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关. (2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd) (3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连). 11、带电粒子在电场中的运动问题 题型概述: 带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计?算题?. 思维模板: (1)处理带电粒子在电场中的运动问题应从两种思路着手①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择). (2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力 ①质子、α粒子、电子、离子等微观粒子一般不计重力; ②液滴、尘埃、小球等宏观带电粒子一般考虑重力; ③特殊情况要视具体情况,根据题中的隐含条件判断. (3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口. 12、带电粒子在磁场中的运动问题 题型概述: 带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种: (1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查;(2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主;(3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主. 思维模板: 在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法. (1)圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上(如图所示). 看大图 (2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如图所示),即?φ=α=2θ. (3)运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度。

高中物理12种解题方法与技巧与操作
其实高中物理考试常见的类型无非包括以下12种,这12种常见题型的解题方法和思维模板,还介绍了高考各类试题的解题方法和技巧,提供各类试题的答题模版,飞速提升你的解题能力,如何才能学好物理呢?我在这里整理了相关资料,快来学习学习吧! 高中物理12种解题方法与技巧 1直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系. 2物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种 (1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化; (2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 3运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。 (2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。 4抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上. 思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt; (2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解 5圆周运动问题 题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况. 思维模板: (1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力. (2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动. 6牛顿运动定律的综合应用问题 题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高. 思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律. 对天体运动类问题,应紧抓两个公式: GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。GMm/R2=mg ②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化. 7机车的启动问题 题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析. 思维模板:(1)机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f. 这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力). (2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F·s计算,不能用W=P·t计算(因为P为变功率). 8以能量为核心的综合应用问题 题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体. 思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律. (1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程; (2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可; (3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取. 9力学实验中速度的测量问题 题型概述:速度的测量是很多力学实验的基础,通过速度的测量可研究加速度、动能等物理量的变化规律,因此在研究匀变速直线运动、验证牛顿运动定律、探究动能定理、验证机械能守恒等实验中都要进行速度的测量.速度的测量一般有两种方法:一种是通过打点计时器、频闪照片等方式获得几段连续相等时间内的位移从而研究速度;另一种是通过光电门等工具来测量速度. 思维模板:用第一种方法求速度和加速度通常要用到匀变速直线运动中的两个重要推论:①vt/2=v平均=(v0+v)/2,②Δx=aT2,为了尽量减小误差,求加速度时还要用到逐差法.用光电门测速度时测出挡光片通过光电门所用的时间,求出该段时间内的平均速度,则认为等于该点的瞬时速度,即:v=d/Δt. 10电容器问题 题型概述:电容器是一种重要的电学元件,在实际中有着广泛的应用,是历年高考常考的知识点之一,常以选择题形式出现,难度不大,主要考查电容器的电容概念的理解、平行板电容器电容的决定因素及电容器的动态分析三个方面. 思维模板: (1)电容的概念:电容是用比值(C=Q/U)定义的一个物理量,表示电容器容纳电荷的多少,对任何电容器都适用.对于一个确定的电容器,其电容也是确定的(由电容器本身的介质特性及几何尺寸决定),与电容器是否带电、带电荷量的多少、板间电势差的大小等均无关 (2)平行板电容器的电容:平行板电容器的电容由两极板正对面积、两极板间距离、介质的相对介电常数决定,满足C=εS/(4πkd) (3)电容器的动态分析:关键在于弄清哪些是变量,哪些是不变量,抓住三个公式[C=Q/U、C=εS/(4πkd)及E=U/d]并分析清楚两种情况:一是电容器所带电荷量Q保持不变(充电后断开电源),二是两极板间的电压U保持不变(始终与电源相连). 11带电粒子在电场中的运动问题 题型概述:带电粒子在电场中的运动问题本质上是一个综合了电场力、电势能的力学问题,研究方法与质点动力学一样,同样遵循运动的合成与分解、牛顿运动定律、功能关系等力学规律,高考中既有选择题,也有综合性较强的计?算题?. 思维模板: (1)处理带电粒子在电场中的运动问题应从两种思路着手①动力学思路:重视带电粒子的受力分析和运动过程分析,然后运用牛顿第二定律并结合运动学规律求出位移、速度等物理量.②功能思路:根据电场力及其他作用力对带电粒子做功引起的能量变化或根据全过程的功能关系,确定粒子的运动情况(使用中优先选择). (2)处理带电粒子在电场中的运动问题应注意是否考虑粒子的重力 ①质子、α粒子、电子、离子等微观粒子一般不计重力; ②液滴、尘埃、小球等宏观带电粒子一般考虑重力; ③特殊情况要视具体情况,根据题中的隐含条件判断. (3)处理带电粒子在电场中的运动问题应注意画好粒子运动轨迹示意图,在画图的基础上运用几何知识寻找关系往往是解题的突破口. 12带电粒子在磁场中的运动问题 题型概述:带电粒子在磁场中的运动问题在历年高考试题中考查较多,命题形式有较简单的选择题,也有综合性较强的计算题且难度较大,常见的命题形式有三种: (1)突出对在洛伦兹力作用下带电粒子做圆周运动的运动学量(半径、速度、时间、周期等)的考查; (2)突出对概念的深层次理解及与力学问题综合方法的考查,以对思维能力和综合能力的考查为主; (3)突出本部分知识在实际生活中的应用的考查,以对思维能力和理论联系实际能力的考查为主. 思维模板:在处理此类运动问题时,着重把握“一找圆心,二找半径(R=mv/Bq),三找周期(T=2πm/Bq)或时间”的分析方法. (1)圆心的确定:因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场的两点)的f的方向,沿两个洛伦兹力f作出其延长线的交点即为圆心.另外,圆心位置必定在圆中任一根弦的中垂线上. (2)半径的确定和计算:利用平面几何关系,求出该圆的半径(或运动圆弧对应的圆心角),并注意利用一个重要的几何特点,即粒子速度的偏向角(φ)等于圆心角(α),并等于弦AB与切线的夹角(弦切角θ)的2倍(如图所示),即?φ=α=2θ. (3)运动时间的确定:t=φT/2π或t=s/v,其中φ为偏向角,T为周期,s为轨迹的弧长,v为线速度。 高中物理解题中的心理操作 一、物理解题概述 近年来解题研究指出:一个问题是指一个不能及时达到的目标,为求达到这个目标所作的体力或心理的行动叫做问题解决。解题时必须要遵从一定的法则。故一个问题应包括以下几个环节:(1)始态(initialstate)──问题所给予的已知情况,物理习题中的已知条件;(2)终态(goglstate) ──解题时要达到的最终目标,物理题中的所求;(3)操作法则(operator)──应用这些法则把问题由始态转变成终态,在物理解题中包括要符合的物理定律原理也要符合人们认识的规律。 在解题过程中,解题者要由始态开始,通过一系列的问题态,到达终态。由始态到终态的所有问题态构成了问题空间,而问题态的转变需要解题者作出某些心理操作,这样就构造了解题的心理图象。这心理图象是个人化的,它因人而异,它所包含的信息可以较问题本身的信息为多或为少,它是受解题者贮存在长期记忆里知识的影响。也就是说,解题者根据自己已有的知识来构造心理图象和寻找题解。许多时,问题空间很大,容许操作的法则也很多。就是一题多解;有时问题空间虽然很大,容许操作的法则却很有限,相应的问题解法也就较少。 解题过程也是一个非常复杂的信息处理过程,解题者则是一个信息处理系统,解题就是系统跟问题的相互作用。解题取决于这个信息处理系统的特性和问题结构。问题结构限制解题的过程,提供一些可行的行动;解题者的特性是指他短期记忆的容量,长期记忆贮存的知识和贮藏及提取这些知识所需的时间,贮藏的知识“模块”(基题)越多,提取这些“模块”的速度越快,解题的效率就越高。 二、物理解题中的心理操作 解题时,将题目所描述的物理现象译成物理图象输入大脑暂时储存,而后大脑将进行一系列复杂的心理操作,使问题得以解决。进行心理操作,一是要有操作对象,二是要有一定的操作规则(包括操作的先后次序)。物理解题中的心理操作对象是贮存于大脑长久记忆中物理知识的基本模块。而这些“模块”信息量的大小,集成化程度的高低,因人而异,各不相同。操作规则必须符合本门学科的原理和人们认识的规律。所谓心理操作是指对这些“模块”进行加工、组合、衔接、再造的心理过程。没有这些“模块”,心理操作就失去了原料。不能要求一个毫无物理知识的人去解物理题,不论他如何聪明,也不会解出物理题来,道理很简单,因为在他大脑的长久记忆里没有贮存加工的“模块”,巧妇难为无米之炊就是这个道理。 物理解题的心理操作一般分三个阶段进行: 第一阶段为检索提取阶段。当要解的习题输入大脑后,一旦被吸引去开始解决时,我们原有的知识经验和实践知觉就会向着一定问题的方向去变化、检索、识别而后提取贮存于大脑长期记忆里相近、相似的“模块”。这些“模块”可以是物理某部分、某单元的知识,也可以是同类型的基本习题。第一阶段的工作为第二阶段的加工提供了原料和必要的准备。当然,对于一个复杂的问题,不见得一次就能将“模块”提取的十分准确,有时在加工的过程中还可反复检索,反复提取。 第二阶段为沟通加工阶段。这一阶段是心理操作十分重要的阶段,它包括采纳、排除、分解、组合、迁移、选择、改造、衔接:沟通等操作环节。通过以上的操作,使问题空间逐步确定,逐步明朗。沟通思路,形成策略。在这了阶段要对原有的“模块”加工再造,重新进行组织,大脑皮层的暂时神经联系在有些部位出现新的开通,有些部位产生暂时关闭,进行新的改组,这时候新的创造思维就会产生。解题从某个角度讲就是一种创造,当解决别人从未解决的问题时更是如此。 在进行操作时,有时需要把整体“模块”分成元件,直至不能再分。把每一个“模块”所含的元素按需要排列,按需要将上述被分解的元素重新组合,依所提供的信息充分想象,还要克服思维定势的影响,使问题空间逐步确定,形成解题策略。 第三个阶段为反馈输出阶段,经过第二阶段的沟通加工,方案策略已经形成,再经过编辑、优化、计算、检验,使被加工的信息系统化、条理化,这就达到了问题的终态。这时将已加工完毕的信息分为两部分:一部分通过职能器官输出,一部分又回输(反馈)到大脑成为新的“模块”贮于长期记忆。我们将心理操作过程用框图示意如下: 心理操作是个人化的思维图式。有些人在问题空间中漫无边际的思索,但无法组织,终无所获。有些人却能在问题空间中用极为有限的搜寻来代替几乎无法穷尽的搜索,甚至有条不紊地走向目的,不出现任何尝试的错误。 三、解题实例分析 例1,一个质量为m,带有电荷为q的物件可在水平轨道ox运动,O端有一与轨道垂直的固定墙。轨道处于匀强电场中,场强的大小为E,h向沿ox是正向,如图二所示,小物体以初速vo从xo沿ox轨道运动,运动时受到大小不变的摩擦力f作用,且f 解:如果我们将上述问题所描述的物理现象进行分析,将会从大脑的长期记忆中提取“电势能”、“动能”、“摩擦力作功”、“功能原理”四个基本知识模块。而这四个模块间有什么联系,是怎样衔接起来的呢?下面我们分两种情况来讨论:如果没有摩擦力,由于物体与墙壁的碰撞井不损失能量,因此物体的功能和电势能可以互相转化,但功能和电势能的总和是守恒的;在有摩擦力的情况下,摩擦力的方向与小物体的运动方向相反,动能和电势能都会逐渐减少,最后将停在O点。这就是小物体克服摩擦力所做的功等于减少的动能和电势能之和。我们可以用框图表示如下: “模块2”与“模块3”从不同的方面描写了物体状态的变化,“模块1”描写克服摩擦力作功的过程。物体状态的变化,显然是因摩擦力作功而引起,这样“模块1” 与“模块2、3”之间就有了困果联系,而二者的定量关系是由“模块4”(功能原理)衔接起来的。因为本问题所求物体的后路程是与过程量功密不可分的物理量,同样出现在作功的全过程中,所以提取摩擦力作功的模块是有道理的。依照图三列式计算并不困难,此处计算从略。 例2,如图所示,在水平光滑的桌面上放一个质量为M的玩具小车,和小车的平台(小车的一部分)上有一质量可以忽略的弹簧。一端固定在平台,另一端用质量为m的小球将弹簧压缩一定距离后用细线捆住,用手将小车固定在桌面上,然后烧断线,小球就被弹出,落在车上A点。如果小车不固定而烧断细线,球将落在车上何处?设小车足够长。球不致落在车外。(1987年高考题) 解:本题可以分小车动与不动两种情况,四个基本物理过程,即“小车不动时小球的平抛运动”,“小车动时小球与小车的相互作用”、“小球对小车的相对运动”,“小车动时小球的平抛运动”。每一个物理过程可以认为是储存了一定信息的模块。每个模块统摄了许多物理知识,为小球的乎抛运动,包括了平抛的运动学特性,重力作用的瞬时效应,空间积累效应,时间积累效应,小车动时情况更复杂。但是经过分解、筛选可以发现四个过程都与速度紧密相连,这就有可能通过速度将四个物理过程联系起来,如框图所示: 在图五中已图示了每一“模块”的从属关系,所应满足的物理规律以及它们之间相互联系的衔接条件。这样解题的思路已经沟通,再构造数学模型去解是并不难的。 例3,一根细绳跨过一定滑轮,两端分别有质量为m及M的物体,如图六,且 M>m,M静止在地面上,当m自由下落h距离后,绳子开始与m、M相互作用,在极短时间内绳子被拉紧,求绳子刚刚被拉紧时,M能上升的最大高度? 解:本题整个的物理过程可分为三个阶段。第一阶段:m作自由落体运动。第二阶段:绳子分别与物体相互作用。第三阶段:m及M分别作匀变速运动。三个阶段的联系是:第一阶段m作自由落体运动的末速度v恰是第二阶段m与绳相互作用前的初速度。第二阶段m、M与绳子相互作用后的速度V就是第三阶段M作变速运动的初速度。如图七所示。 从图七我们可以看出每一个阶段实质上就是一个知识“模块”,但每一“模块”所包含的知识容量并不相同,每一“模块”有各自的特点和应该满足的规律。这些规律就是操作规则。这三个“模块”自然地衔接起来就构成了一个完整清晰的图象,再计算是不难的。 人类认识的理论不仅要解释人怎样进行复杂的思维和解题工作,还要解释人是怎样学会这么作的。研究解题者对物理问题构造的心理图象,目的是了解他们对物理知识的组织和加工能力。在物理学习上重理解轻记忆的作法是不足取的,也是没有根据的。解题的成功者在于他们拥有高度组织的物理知识,并在记忆中贮藏了不少相类似问题的题解。在物理教学中只让学生盲目作题,不讲习题的沟通和演变、不引导学生作正确的定性分析也是不可取的。凡成功的解题者,解题策略好的,大都是先对问题作定性分析,探索到解题思路后,才作定量分析。

高中物理高频考点模型清单
高中物理的难度不用我说,大家都知道。有很多同学们理综成绩物理严重的拖后腿,所以当务之急我们要养成物理的抽象思维,提高物理的解题能力是当务之急。而应用物理模型的时候,不可以生搬硬套,要根据物理模型对应的形成条件与具体情况合理的利用,这样才能够在根本上解决物理所面的的难点。 由于篇幅限制,以上是部分资料内容。高三的总复习需要高二这个黄金暑假铺好路,打牢基础,利用好这个黄金暑假,开学后你会拉开分数,短时间逆袭!

高中物理一些巧妙解题方法
高中物理解题方法 一、图像法方法简介图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的.高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题.典型应用1.把握图像斜率的物理意义在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同.2.抓住截距的隐含条件图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件.3.挖掘交点的潜在含意一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”.4.明确面积的物理意义利用图像的面积所代表的物理意义解题,往往带有一定的综合性,常和斜率的物理意义结合起来,其中v一t图像中图线下的面积代表质点运动的位移是最基本也是运用得最多的.5.寻找图中的临界条件物理问题常涉及到许多临界状态,其临界条件常反映在图中,寻找图中的临界条件,可以使物理情景变得清晰. 二、等效法方法介绍等效法是科学研究中常用的思维方法之一,它是从事物的等同效果这一基本点出发的,它可以把复杂的物理现象、物理过程转化为较为简单的物理现象、物理过程来进行研究和处理,其目的是通过转换思维活动的作用对象来降低思维活动的难度,它也是物理学研究的一种重要方法.用等效法研究问题时,并非指事物的各个方面效果都相同,而是强调某一方面的效果.因此一定要明确不同事物在什么条件、什么范围、什么方面等效.在中学物理中,我们通常可以把所遇到的等效分为:物理量等效、物理过程等效、物理模型等效等典例分析1.物理量等效在高中物理中,小到等效劲度系数、合力与分力、合速度与分速度、总电阻与分电阻等;大到等效势能、等效场、矢量的合成与分解等,都涉及到物理量的等效.如果能将物理量等效观点应用到具体问题中去,可以使我们对物理问题的分析和解答变得更为简捷.2.物理过程等效对于有些复杂的物理过程,我们可以用一种或几种简单的物理过程来替代,这样能够简化、转换、分解复杂问题,能够更加明确研究对象的物理本质,以利于问题的顺利解决.高中物理中我们经常遇到此类问题,如运动学中的逆向思维、电荷在电场和磁场中的匀速圆周运动、平均值和有效值等.3.物理模型等效物理模型等效在物理学习中应用十分广泛,特别是力学中的很多模型可以直接应用到电磁学中去,如卫星模型、人船模型、子弹射木块模型、碰撞模型、弹簧振子模型等.实际上,我们在学习新知识时,经常将新的问题与熟知的物理模型进行等效处理. 三、极端法方法简介通常情况下,由于物理问题涉及的因素众多、过程复杂,很难直接把握其变化规律进而对其做出准确的判断.但我们若将问题推到极端状态、极端条件或特殊状态下进行分析,却可以很快得出结论.像这样将问题从一般状态推到特殊状态进行分析处理的解题方法就是极端法.极端法在进行某些物理过程的分析时,具有独特作用,恰当应用极端法能提高解题效率,使问题化难为易,化繁为简,思路灵活,判断准确.用极端法分析问题,关键在于是将问题推向什么极端,采用什么方法处理.具体来说,首先要求待分析的问题有“极端”的存在,然后从极端状态出发,回过头来再去分析待分析问题的变化规律.其实质是将物理过程的变化推到极端,使其变化关系变得明显,以实现对问题的快速判断.通常可采用极端值、极端过程、特殊值、函数求极值等方法.典例分析1.极端值法对于所考虑的物理问题,从它所能取的最大值或最小值方面进行分析,将最大值或最小值代入相应的表达式,从而得到所需的结论.2.极端过程法有些问题,对一般的过程分析求解难度很大,甚至中学阶段暂时无法求出,可以把研究过程推向极端情况来加以考察分析,往往能很快得出结论.3.特殊值法有些问题直接计算可能非常繁琐,但由于物理过程变化的有规律性,此时若取一个特殊值代入,得到的结论也应该是满足的,这种方法尤其适用于选择题的快速求解.4.函数求极值法高考中对运用数学工具解决物理问题的要求越来越高,其中运用函数知识解决极值问题是常常遇到的.数学上求极值的方法通常有:利用二次函数求极值、利用不等式求极值、利用判别式求极值、利用三角函数求极值等. 四、对称法方法介绍由于物质世界存在某些对称性,使得物理学理论也具有相应的对称性,从而使对称现象普遍存在于各种物理现象和物理规律中.应用这种对称性不仅能帮助我们认识和探索物质世界的某些基本规律,而且也能帮助我们去求解某些具体的物理问题,这种思维方法在物理学中称为对称法.物理中对称现象比比皆是,对称的结构、对称的作用、对称的电路、对称的物像等等.一般情况下,对称表现为研究对象在结构上的对称性、物理过程在时间上和空间上的对称性、物理量在分布上的对称性及作用效果的对称性等.用对称性解题的关键是敏锐地抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径,利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题. 五、全过程法、逆向思维法处理物理问题方法简介(一)全过程法全过程法又称为过程整体法,它是相对于程序法而言的。它是将研究对象所经历的各个不同物理过程合并成一个整体过程来研究分析。经全过程整体分析后,可以对全过程一步列式求解。这样减少了解题步骤,减少了所列的方程数,大大简化了解题过程,使多过程的综合题的求解变的简捷方便。动能定理、动量定理都是状态变化的定理,过程量等于状态量的变化。状态量的变化只取决于始末状态,不涉及中间状态。同样,机械能守恒定律、动量守恒定律是状态量守恒定律,只要全过程符合守恒条件,就有初状态的状态量和末状态的状态量守恒,也不必考虑中间状态量。因此,对有关状态量的计算,只要各过程遵循上述定理、定律,就有可能将几个过程合并起来,用全过程都适用的物理规一次列出方程,直接求得结果。(二)逆向思维法所谓“逆向思维”,简单来说就是“倒过来想一想”.这种方法用于解物理题,特别是某些难题,很有好处.下面通过去年高考物理试卷中的几道题的解法分析,谈谈逆向思维解题法的应用的几种情况递推法解题方法简介 递推法是利用问题本身所具有的一种递推关系求解问题的一种方法,即当问题中涉及相互联系的物体或过程较多,相互作用或过程具有一定的重复性并且有规律时,应根据题目特点应用归纳的数学思想将所研究的问题归类,然后求出通式。 具体方法是先分析某一次作用的情况,得出结论;再根据多次作用的重复性和它们的共同点,把结论推广,然后结合数学知识求解。用递推法解题的关键是导出联系相邻两次作用的递推关系式。
物理实验的基本思想方法 1.等效法等效法是科学研究中常用的一种思维方法.对一些复杂问题采用等效法,可将其变换成理想的、简单的、已知规律的过程来处理,常使问题的解决得以简化.因此,等效法也是物理实验中常用的方法.如在“验证力的平行四边形定则”的实验中,要求用一个弹簧秤单独拉橡皮条时,要与用两个互成角度的弹簧秤同时拉橡皮条时产生的效果相同——使结点到达同一位置O,即要在合力与两分力等效的条件下,才能找出它们之间合成与分解时所遵循的关系——平行四边形定则.又如在“验证动量守恒定律”的实验中,用小球的水平位移代替小球的水平速度;在“验证牛顿第二定律”的实验中,通过调节木板的倾斜度使重力的分力抵消摩擦力而等效于物体不受摩擦力作用.还有,电学实验中电流表的改装、用替换法测电阻等,都是等效法的应用.2.转换法将某些不易显示、不易直接测量的物理量转化为易于显示、易于测量的物理量的方法称为转换法(间接测量法).转换法是物理实验常用的方法.如:弹簧测力计是把力的大小转换为弹簧的伸长量;打点计时器是把流逝的时间转换成振针的周期性振动;电流表是利用电流在磁场中受力,把电流转化为指针的偏转角;用单摆测定重力加速度g是通过公式T=2πg(L)把g的测量转换为T和L的测量,等等.3.留迹法留迹法是利用某些特殊的手段,把一些瞬间即逝的现象(如位置、轨迹等)记录下来,以便于此后对其进行仔细研究的一种方法.留迹法也是物理实验中常用的方法.如:用打点计时器打在纸带上的点迹记录小车的位移与时间之间的关系;用描迹法描绘平抛运动的轨迹;在“测定玻璃的折射率”的实验中,用大头针的插孔显示入射光线和出射光线的方位;在描绘电场中等势线的实验中,用探针通过复写纸在白纸上留下的痕迹记录等势点的位置等等,都是留迹法在实验中的应用.4.累积法累积法是把某些难以直接准确测量的微小量累积后测量,以提高测量的准确度的一种实验方法.如:在缺乏高精密度的测量仪器的情况下测细金属丝的直径,常把细金属丝绕在圆柱体上测若干匝的总长度,然后除以匝数就可求出细金属丝的直径;测一张薄纸的厚度时,常先测出若干页纸的总厚度,再除以被测页数即所求每页纸的厚度;在“用单摆测定重力加速度”的实验中,单摆周期的测定就是通过测单摆完成多次全振动的总时间除以全振动的次数,以减小个人反应时间造成的误差影响等.5.模拟法模拟法是一种间接实验方法,它是通过与原型相似的模型来说明原型的规律性的.模拟法在中学物理实验中的典型应用是“用描迹法画出电场中平面上的等势线”这一实验,由于直接描绘静电场的等势线很困难,而恒定电流的电场与静电场相似,所以用恒定电流的电场来模拟静电场,通过它来了解静电场中等势线的分布情况.6.控制变量法在多因素的实验中,可以先控制一些量不变,依次研究某一个因素的影响.如在“验证牛顿第二定律”的实验中,可以先保持质量一定,研究加速度和力的关系;再保持力一定,研究加速度和质量的关系;最后综合得出加速度与质量、力的关系.三、实验数据的处理方法1.列表法在记录和处理数据时,常常将数据列成表格.数据列表可以简单而又明确地表示出有关物理量之间的关系,有助于找出物理量之间联系的规律性.列表的要求:(1)写明表的标题或加上必要的说明;(2)必须交代清楚表中各符号所表示的物理量的意义,并写明单位;(3)表中数据应是正确反映测量结果的有效数字.2.平均值法现行教材中只介绍了算术平均值,即把测定的数据相加求和,然后除以测量的次数.必须注意的是,求平均值时应该按测量仪器的精确度决定应保留的有效数字的位数.3.图象法图象法是物理实验中广泛应用的处理实验数据的方法.图象法的最大优点是直观、简便.在探索物理量之间的关系时,由图象可以直观地看出物理量之间的函数关系或变化趋势,由此建立经验公式.作图的规则:(1)作图一定要用坐标纸,坐标纸的大小要根据有效数字的位数和结果的需要来定;(2)要标明轴名、单位,在轴上每隔一定的间距按有效数字的位数标明数值;(3)图上的连线不一定通过所有的数据点,而应尽量使数据点合理地分布在线的两侧;(4)作图时常通过选取适当的坐标轴使图线线性化,即“变曲为直”. 虽然图象法有许多优点,但在图纸上连线时有较大的主观任意性,另外连线的粗细、图纸的大小、图纸本身的均匀程度等,都对结果的准确性有影响.
学习物理非常注重过程,一个认知、理解、运用的过程。 1.认知:利用身边的事物或现象甚至是老师叙述的一些例子来帮助自己去充分认识它,对它产生兴趣。2.理解:用理解的方式去记忆公式、定理、试验等等。可以用形象思维等等巧妙的方法去理解和记忆。例如,什么是真空,可以这样去理解:真空就是真的空了,什么都没有了。3.运用:一类是来应付考试,另一类则是来解释身边得一些物理现象。所以,在学习时,首先,不要有惧怕的心理,因为你前一段没学好的经历可能会暗示你什么,这可能会导致你恶性循环。努力告诉自己“我能行!!!”其实心理暗示很有用哦!不过,为了给自己增加底气,最好还是做好预习工作,做到心里有数。其次,上课要紧跟老师的思路,适当地记些笔记,记一些书本上没有明确阐明的甚至是遗漏的以及自己容易出错的知识点。课下抽时间多练一练,别以任何理由来推托,从而放弃了练习的最佳时期,最后只能导致悲剧的发生。最后一点也是最重要的一点,就是一定要做好及时总结。例如,上次考试的卷子发下来了,虽然认真订正过了,但还要想想为什么会错?正确答案是怎么算出来的?如果下次再考到还会错吗?等等。 我想,通过这些学习方法,一定能学好物理的。
1.读题(别认为这是废的一步,而草草的掠过,因为题中有很多信息比如说:光滑的平面,不计轻质弹簧......) 2.建立物理模型(很多物理老师都会说建立模型,但是又讲的很神秘......其实这个就是要看你平时的积累了,比如说:飞机高空抛物就要想到小球的平抛运动等等)3.联想公式(重力场里面就要想平抛的公式,磁场里面就要像洛伦兹力,安培力等等公式,依此类推)4.组合数据和公式(将所有有关公式回想好了之后,联系题目给的条件选取最好的公式.比如:题目是圆周运动,给了速度和就要想到mv²/r)5.列出公式(记住,只能按照自己的思考步骤把公式列出来,但是千万不要把数字带进去!比如1/2mv²=mgh就不要把每个物理量的数字带进去了,但是1/2要带进去) 6.就是算结果了,但是不要算错了!
物理题其实只要把物理过程弄明白,基本的公式原理都知道,题基本上就能解出来了。很多老师在课堂上讲得都是物理过程,所以把物理过程搞清楚对于解题很重要,回答的不一定很对,希望对你有些帮助!
物理实验的基本思想方法 1.等效法等效法是科学研究中常用的一种思维方法.对一些复杂问题采用等效法,可将其变换成理想的、简单的、已知规律的过程来处理,常使问题的解决得以简化.因此,等效法也是物理实验中常用的方法.如在“验证力的平行四边形定则”的实验中,要求用一个弹簧秤单独拉橡皮条时,要与用两个互成角度的弹簧秤同时拉橡皮条时产生的效果相同——使结点到达同一位置O,即要在合力与两分力等效的条件下,才能找出它们之间合成与分解时所遵循的关系——平行四边形定则.又如在“验证动量守恒定律”的实验中,用小球的水平位移代替小球的水平速度;在“验证牛顿第二定律”的实验中,通过调节木板的倾斜度使重力的分力抵消摩擦力而等效于物体不受摩擦力作用.还有,电学实验中电流表的改装、用替换法测电阻等,都是等效法的应用.2.转换法将某些不易显示、不易直接测量的物理量转化为易于显示、易于测量的物理量的方法称为转换法(间接测量法).转换法是物理实验常用的方法.如:弹簧测力计是把力的大小转换为弹簧的伸长量;打点计时器是把流逝的时间转换成振针的周期性振动;电流表是利用电流在磁场中受力,把电流转化为指针的偏转角;用单摆测定重力加速度g是通过公式T=2πg(L)把g的测量转换为T和L的测量,等等.3.留迹法留迹法是利用某些特殊的手段,把一些瞬间即逝的现象(如位置、轨迹等)记录下来,以便于此后对其进行仔细研究的一种方法.留迹法也是物理实验中常用的方法.如:用打点计时器打在纸带上的点迹记录小车的位移与时间之间的关系;用描迹法描绘平抛运动的轨迹;在“测定玻璃的折射率”的实验中,用大头针的插孔显示入射光线和出射光线的方位;在描绘电场中等势线的实验中,用探针通过复写纸在白纸上留下的痕迹记录等势点的位置等等,都是留迹法在实验中的应用.4.累积法累积法是把某些难以直接准确测量的微小量累积后测量,以提高测量的准确度的一种实验方法.如:在缺乏高精密度的测量仪器的情况下测细金属丝的直径,常把细金属丝绕在圆柱体上测若干匝的总长度,然后除以匝数就可求出细金属丝的直径;测一张薄纸的厚度时,常先测出若干页纸的总厚度,再除以被测页数即所求每页纸的厚度;在“用单摆测定重力加速度”的实验中,单摆周期的测定就是通过测单摆完成多次全振动的总时间除以全振动的次数,以减小个人反应时间造成的误差影响等.5.模拟法模拟法是一种间接实验方法,它是通过与原型相似的模型来说明原型的规律性的.模拟法在中学物理实验中的典型应用是“用描迹法画出电场中平面上的等势线”这一实验,由于直接描绘静电场的等势线很困难,而恒定电流的电场与静电场相似,所以用恒定电流的电场来模拟静电场,通过它来了解静电场中等势线的分布情况.6.控制变量法在多因素的实验中,可以先控制一些量不变,依次研究某一个因素的影响.如在“验证牛顿第二定律”的实验中,可以先保持质量一定,研究加速度和力的关系;再保持力一定,研究加速度和质量的关系;最后综合得出加速度与质量、力的关系.三、实验数据的处理方法1.列表法在记录和处理数据时,常常将数据列成表格.数据列表可以简单而又明确地表示出有关物理量之间的关系,有助于找出物理量之间联系的规律性.列表的要求:(1)写明表的标题或加上必要的说明;(2)必须交代清楚表中各符号所表示的物理量的意义,并写明单位;(3)表中数据应是正确反映测量结果的有效数字.2.平均值法现行教材中只介绍了算术平均值,即把测定的数据相加求和,然后除以测量的次数.必须注意的是,求平均值时应该按测量仪器的精确度决定应保留的有效数字的位数.3.图象法图象法是物理实验中广泛应用的处理实验数据的方法.图象法的最大优点是直观、简便.在探索物理量之间的关系时,由图象可以直观地看出物理量之间的函数关系或变化趋势,由此建立经验公式.作图的规则:(1)作图一定要用坐标纸,坐标纸的大小要根据有效数字的位数和结果的需要来定;(2)要标明轴名、单位,在轴上每隔一定的间距按有效数字的位数标明数值;(3)图上的连线不一定通过所有的数据点,而应尽量使数据点合理地分布在线的两侧;(4)作图时常通过选取适当的坐标轴使图线线性化,即“变曲为直”. 虽然图象法有许多优点,但在图纸上连线时有较大的主观任意性,另外连线的粗细、图纸的大小、图纸本身的均匀程度等,都对结果的准确性有影响.
学习物理非常注重过程,一个认知、理解、运用的过程。 1.认知:利用身边的事物或现象甚至是老师叙述的一些例子来帮助自己去充分认识它,对它产生兴趣。2.理解:用理解的方式去记忆公式、定理、试验等等。可以用形象思维等等巧妙的方法去理解和记忆。例如,什么是真空,可以这样去理解:真空就是真的空了,什么都没有了。3.运用:一类是来应付考试,另一类则是来解释身边得一些物理现象。所以,在学习时,首先,不要有惧怕的心理,因为你前一段没学好的经历可能会暗示你什么,这可能会导致你恶性循环。努力告诉自己“我能行!!!”其实心理暗示很有用哦!不过,为了给自己增加底气,最好还是做好预习工作,做到心里有数。其次,上课要紧跟老师的思路,适当地记些笔记,记一些书本上没有明确阐明的甚至是遗漏的以及自己容易出错的知识点。课下抽时间多练一练,别以任何理由来推托,从而放弃了练习的最佳时期,最后只能导致悲剧的发生。最后一点也是最重要的一点,就是一定要做好及时总结。例如,上次考试的卷子发下来了,虽然认真订正过了,但还要想想为什么会错?正确答案是怎么算出来的?如果下次再考到还会错吗?等等。 我想,通过这些学习方法,一定能学好物理的。
1.读题(别认为这是废的一步,而草草的掠过,因为题中有很多信息比如说:光滑的平面,不计轻质弹簧......) 2.建立物理模型(很多物理老师都会说建立模型,但是又讲的很神秘......其实这个就是要看你平时的积累了,比如说:飞机高空抛物就要想到小球的平抛运动等等)3.联想公式(重力场里面就要想平抛的公式,磁场里面就要像洛伦兹力,安培力等等公式,依此类推)4.组合数据和公式(将所有有关公式回想好了之后,联系题目给的条件选取最好的公式.比如:题目是圆周运动,给了速度和就要想到mv²/r)5.列出公式(记住,只能按照自己的思考步骤把公式列出来,但是千万不要把数字带进去!比如1/2mv²=mgh就不要把每个物理量的数字带进去了,但是1/2要带进去) 6.就是算结果了,但是不要算错了!
物理题其实只要把物理过程弄明白,基本的公式原理都知道,题基本上就能解出来了。很多老师在课堂上讲得都是物理过程,所以把物理过程搞清楚对于解题很重要,回答的不一定很对,希望对你有些帮助!

高二物理常考类型题目
世上只有自己最了解自己,学习上也一样。根据自己的物理学习经历,分析自己的水平,确定自己在物理学科方向上的奋斗目标,下面我给大家分享一些高二物理常考类型题目,希望能够帮助大家,欢迎阅读! 高二物理常考类型题目 1、直线运动问题 题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查.单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题. 思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系.? 2、物体的动态平衡问题 题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题.物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题. 思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化. 3、运动的合成与分解问题 题型概述:运动的合成与分解问题常见的模型有两类.一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解. 思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析. 4、抛体运动问题 题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上. 思维模板:(1)平抛运动物体在水平方向做匀速直线运动,在竖直方向做匀加速直线运动,其位移满足x=v0t,y=gt2/2,速度满足vx=v0,vy=gt;(2)斜抛运动物体在竖直方向上做上抛(或下抛)运动,在水平方向做匀速直线运动,在两个方向上分别列相应的运动方程求解 5、圆周运动问题 题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动.水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动.对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况. 思维模板: (1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由F合=mv2/r=mrω2列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力. (2)竖直面内的圆周运动可以分为三个模型:①绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力;②杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零;③外轨模型:只能提供背离圆心方向的力,物体在最高点时,若v<(gR)1/2,沿轨道做圆周运动,若v≥(gR)1/2,离开轨道做抛体运动. 6、牛顿运动定律的综合应用问题 题型概述:牛顿运动定律是高考重点考查的内容,每年在高考中都会出现,牛顿运动定律可将力学与运动学结合起来,与直线运动的综合应用问题常见的模型有连接体、传送带等,一般为多过程问题,也可以考查临界问题、周期性问题等内容,综合性较强.天体运动类题目是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高. 思维模板:以牛顿第二定律为桥梁,将力和运动联系起来,可以根据力来分析运动情况,也可以根据运动情况来分析力.对于多过程问题一般应根据物体的受力一步一步分析物体的运动情况,直到求出结果或找出规律. 对天体运动类问题,应紧抓两个公式:GMm/r2=mv2/r=mrω2=mr4π2/T2 ①。GMm/R2=mg②.对于做圆周运动的星体(包括双星、三星系统),可根据公式①分析;对于变轨类问题,则应根据向心力的供求关系分析轨道的变化,再根据轨道的变化分析其他各物理量的变化. 7、机车的启动问题 题型概述:机车的启动方式常考查的有两种情况,一种是以恒定功率启动,一种是以恒定加速度启动,不管是哪一种启动方式,都是采用瞬时功率的公式P=Fv和牛顿第二定律的公式F-f=ma来分析. 思维模板:(1)机车以额定功率启动.机车的启动过程如图所示,由于功率P=Fv恒定,由公式P=Fv和F-f=ma知,随着速度v的增大,牵引力F必将减小,因此加速度a也必将减小,机车做加速度不断减小的加速运动,直到F=f,a=0,这时速度v达到最大值vm=P额定/F=P额定/f. 这种加速过程发动机做的功只能用W=Pt计算,不能用W=Fs计算(因为F为变力). (2)机车以恒定加速度启动.恒定加速度启动过程实际包括两个过程.如图所示,“过程1”是匀加速过程,由于a恒定,所以F恒定,由公式P=Fv知,随着v的增大,P也将不断增大,直到P达到额定功率P额定,功率不能再增大了;“过程2”就保持额定功率运动.过程1以“功率P达到最大,加速度开始变化”为结束标志.过程2以“速度最大”为结束标志.过程1发动机做的功只能用W=F?s计算,不能用W=P?t计算(因为P为变功率). 8、以能量为核心的综合应用问题 题型概述:以能量为核心的综合应用问题一般分四类.第一类为单体机械能守恒问题,第二类为多体系统机械能守恒问题,第三类为单体动能定理问题,第四类为多体系统功能关系(能量守恒)问题.多体系统的组成模式:两个或多个叠放在一起的物体,用细线或轻杆等相连的两个或多个物体,直接接触的两个或多个物体. 思维模板:能量问题的解题工具一般有动能定理,能量守恒定律,机械能守恒定律.(1)动能定理使用方法简单,只要选定物体和过程,直接列出方程即可,动能定理适用于所有过程;(2)能量守恒定律同样适用于所有过程,分析时只要分析出哪些能量减少,哪些能量增加,根据减少的能量等于增加的能量列方程即可;(3)机械能守恒定律只是能量守恒定律的一种特殊形式,但在力学中也非常重要.很多题目都可以用两种甚至三种方法求解,可根据题目情况灵活选取. 高中物理备考方法 了解物理学科的出题特点 对于高中生来说物理考试试题还是以教材为基础回归教材,但是在做题的过程中又高于教材,在形式上有所创新,所以要求大家在备考的过程中注重对物理教材的学习,掌握书中知识点的含义,并且了解其出题方式,对物理教材中的例题都要做一遍,更加深层次的了解物理知识,对于不理解的地方要及时找老师或者同学帮忙解释清楚,在备考的时候不积压问题。近年来物理试题的出题特点都是比较关注热点,将物理知识和日常生活生产中的知识相结合,这就要求考生能够灵活应用知识点,并且在平时备考的时候能够对知识点的理解也要更加的灵活。 提高物理课上的效率 对于各位考生来说想要提高物理成绩,那么提高物理的备考效率是非常重要的,因为在物理的备考中提高上课效率是事半功倍的事情,对于各位考生来说如果上课的时候能够将知识点掌握百分之八-九十,那么课下的时候就会更加的容易了,在课上老师会用通俗的例子将复杂的知识点简单话,所以更加有利于大家理解,并且通过老师的讲解能够帮助考生规范整体的备考方向。 通过做物理试题查缺补漏 在做物理试题的过程中能够通过做题帮助各位考生查缺补漏,因为在做题的过程中能够将脑海中抽象的概念具体化,并且能够对知识点真正的应用,才能清楚了解自己是否真正的理解了对应知识点,对于不理解的地方要技术回归课本再次温习。 高二学好物理的方法有哪些 图象法 应用图象描述规律、解决问题是物理学中重要的手段之一.因图象中包含丰富的语言、解决问题时简明快捷等特点,在高考中得到充分体现,且比重不断加大。 涉及内容贯穿整个物理学.描述物理规律的最常用方法有公式法和图象法,所以在解决此类问题时要善于将公式与图象合一相长。 对称法 利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接抓住问题的实质,出奇制胜,快速简便地求解问题。像课本中伽利略认为圆周运动最美(对称)为牛顿得到万有引力定律奠定基础。 估算法 有些物理问题本身的结果,并不一定需要有一个很准确的答案,但是,往往需要我们对事物有一个预测的估计值.像卢瑟福利用经典的粒子的散射实验根据功能原理估算出原子核的半径。 采用“估算”的方法能忽略次要因素,抓住问题的主要本质,充分应用物理知识进行快速数量级的计算。 微元法 在研究某些物理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解.像课本中提到利用计算摩擦变力做功、导出电流强度的微观表达式等都属于利用微元思想的应用。 整体法 整体是以物体系统为研究对象,从整体或全过程去把握物理现象的本质和规律,是一种把具有相互联系、相互依赖、相互制约、相互作用的多个物体,多个状态,或者多个物理变化过程组合作为一个融洽加以研究的思维形式。 高二物理常考类型题目相关文章: ★高二物理常考的类型 ★高中物理的10中题目类型与提高解题速度的方法 ★高二物理上学期期末考试试题 ★高二上学期物理期末考试复习题 ★高二物理考试选择题和应用题技巧 ★高中物理常见模型归纳 ★高二物理高效做题的六种方法 ★高二物理上册期末考试试卷试题 ★高二物理习题及参考答案 ★高中物理知识考点整理
